R语言随机森林回归(randomforest)模型构建

本文介绍了如何在R语言中构建随机森林回归模型,包括数据预处理、模型训练、特征重要度评估和结果可视化。通过实例展示了在前列腺癌、生物标志物和糖尿病数据集上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言随机森林回归(randomforest)模型构建

目录

R语言随机森林回归(randomforest)模型构建

#随机森林

#包导入

#随机森林模型构建、特征重要度可视化


 

#随机森林

随机森林属于 集成学习 中的 Bagging(Bootstrap AGgregation 的简称) 方法。

随机森林是由很多决策树构成的,不同决策树之间没有关联。

当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。

一个样本容量为N的样本,有放回的抽取N次,每次抽取1个,最终形成了N个样本。这选择好了的N个样本用来训练一个决策树,作

R语言中的随机森林(Random Forest)回归是一种基于决策树的集成学习方法,用于预测任务。随机森林回归通过构建大量决策树并取其平均结果来减少过拟合风险,提高预测精度。在`randomForest()`函数中,超参数优化通常是通过调整以下几个关键参数来进行: 1. `mtry` (默认值一般设为sqrt(p),其中p为特征数):每棵树选择多少个特征创建节点。较小的值可以降低过拟合,较大的值则可能增加预测的多样性。 2. `ntree`:树的数量,越多通常意味着更准确的模型,但也需要更多计算资源。 3. `min.node.size` 或 `nodesize`:最小叶子节点样本数,有助于防止过度细分数据。 4. `importance` 和 `replace`:是否计算特征重要性和是否允许特征在建立新树时被替换。 对于超参数的寻优,R中可以使用内置的` TuneRanger`包,它是` ranger`包的一个扩展,它提供了对`randomForest`函数参数的网格搜索、随机搜索等方法进行模型调优的功能。例如,你可以这样操作: ```R library(TuneRanger) set.seed(123) # 设置随机种子以便于复现结果 # 定义超参数范围 param_grid <- data.frame(mtry = seq(2, sqrt(ncol(data)), by = 1), ntree = c(50, 100, 200), importance = c(TRUE, FALSE)) # 创建ranger模型 rf_model <- tune_ranger(y ~ ., data = training_data, method = "regression", grid = param_grid) # 获取最优参数组合 best_params <- rf_model$best.parameters ``` 然后,你可以使用`best_params`中的参数设置创建最终的`randomForest()`模型: ```R final_rf <- randomForest(y ~ ., data = training_data, mtry = best_params$mtry, ntree = best_params$ntree, importance = best_params$importance) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值