R语言data.table导入数据实战:fread函数和read.csv函数时间效率对比

本文探讨了R语言中data.table包的fread函数与基础的read.csv函数在导入数据时的时间效率,强调了data.table在处理大规模数据时的显著优势。通过实例展示了fread函数比read.csv快约20倍,特别是在处理大型数据集时,这种差异更为明显。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言data.table导入数据实战:fread函数和read.csv函数时间效率对比

目录

R语言data.table导入数据实战:fread函数和read.csv函数时间效率对比

#data.table是什么?

#data.table安装

#data.table导入数据集

#fread函数和read.csv函数时间效率对比


#data.table是什么?

data.table是R的默认data.frame处理表格数据的替代方法。

它之所以如此受欢迎,是因为它在较大数据上的执行速度和简洁的语法。因此,有效地键入更少的代码并获得更快的速度。它是R中下载量最大的软件包之一,也是数据科学家的首选。

就变成速度以及运行速度而言,这可能是R编程语言发生过的最好的事情之一。

虽然data.table提供的语法与常规的R data.frame略有不同,但它非常直观。因此,一旦得到了它,就会感觉到不想回到基本的R data.frame语法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值