R语言编写自定义K折交叉验证(k-fold crossValidation)函数、使用使用bootstrap包中的crossval函数来交叉验证模型的R方指标、验证模型的效能的可靠性和稳定性

本文介绍了如何使用R语言进行自定义K折交叉验证,通过bootstrap包的crossval函数评估模型的R方指标,从而验证模型在独立数据集上的泛化能力。讨论了交叉验证在解决过拟合、欠拟合问题以及衡量模型稳定性中的作用,并通过实例展示了交叉验证过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言编写自定义K折交叉验证(k-fold crossValidation)函数、使用使用bootstrap包中的crossval函数来交叉验证模型的R方指标、验证模型的效能的可靠性和稳定性

目录

R语言编写自定义K折交叉验证(k-fold crossValidation)函数、使用使用bootstrap包中的crossval函数来交叉验证模型的R方指标、验证模型的效能的可靠性和稳定性

 #仿真数据1

#仿真数据2

 #R语言编写自定义K折交叉验证(k-fold crossValidation)函数、使用使用bootstrap包中的crossval函数来交叉验证模型的R方指标


在许多方面,回归分析都是统计学的核心。它是一组方法的广义术语,用于从一个或多个预测变量(也称为独立变量或解释变量)中预测响应变量(也称为依赖变量、标准变量或结果变量)。一般说来,回归分析可以用来识别与响应变量相关的解释变量,描述所涉及

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值