目录
- 引言:AI 应用的基石 - 向量数据库与大语言模型
- 向量数据库革命:Milvus 简介
- Milvus 的核心特性
- 向量数据库的应用场景
- DeepSeek:中国自研的强大语言模型
- DeepSeek 模型家族
- DeepSeek 的优势
- Milvus + DeepSeek 融合:打造智能文档检索与问答系统
- 系统架构概述
- 实现步骤
- 环境设置
- 配置 Milvus 服务
- 文档处理与向量化
- 配置 DeepSeek 模型
- 构建交互式问答接口
- 进阶功能:多模态文档处理
- 优化与扩展
- 向量索引优化
- 混合查询
- 实现 RAG 评估与优化
- 实际应用场景
- 企业知识库搜索
- 智能客服系统
- 研究论文分析助手
- 挑战与未来发展
- 当前挑战
- 未来发展方向
- 结论:AI 的未来,由你我共同构建
引言:AI 应用的基石 - 向量数据库与大语言模型
在人工智能浪潮席卷全球的今天,我们正步入一个由数据和模型驱动的智能时代。构建新一代 AI 应用,离不开两大关键技术支柱:向量数据库 和 大型语言模型 (LLM)。前者赋予机器高效处理和理解非结构化数据的能力,后者则赋予机器类人的语言理解和生成能力。
本文将聚焦于两个备受瞩目的开源项目:Milvus 向量数据库 和 DeepSeek 大型语言模型。我们将深入探讨它们各自的特性与优势,并展示如何将这两者巧妙结合,构建出强大的下一代 AI 应用。
向量数据库革命:Milvus 简介
当今世界,数据呈现爆炸式增长,其中绝大部分是非结构化的,例如文本、图像、音频和视频。为了让计算机能够理解和处理这些复杂的数据,我们需要将它们转化为机器可理解的表示形式——向量嵌入 (Embedding Vector)。向量数据库应运而生,它是一种专门用于存储、索引和查询这些高维向量的数据库系统。
Milvus,作为一款领先的开源向量数据库,在这一领域扮演着重要的角色。它专为处理海量的嵌入向量而设计,能够高效地完成相似性搜索和分析,为各种 AI 应用提供坚实的数据底座。
Milvus 的核心特性
Milvus 之所以能够脱颖而出,得益于其一系列强大的核心特性:
-
高效的向量搜索: Milvus 提供了多种先进的索引类型,例如
HNSW
、IVFFLAT
和IVFSQ8
等,开发者可以根据不同的应用场景和性能需求选择合适的索引,从而实现毫秒级的向量检索速度。 -
可扩展架构: Milvus 采用分布式架构设计,支持水平扩展,能够轻松应对 PB 级甚至 EB 级的大规模向量数据,满足不断增长的数据处理需求。
-
混合搜索: Milvus 不仅支持基于向量相似度的语义搜索,还允许用户结合传统的标量过滤条件进行混合查询,实现更加精准和灵活的搜索。
-
实时数据处理: Milvus 支持数据的实时插入和查询,保证了数据的时效性,这对于需要实时响应的应用场景至关重要。
-
云原生设计: Milvus 遵循云原生理念设计,易于部署在 Kubernetes 等云环境中,方便用户构建可弹性伸缩的云端 AI 应用。