目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于LSTM与胶囊网络的电商评论情感分析
课题背景和意义
随着电子商务快速发展,消费者在购买电子产品时通常会参考他人的评论和反馈。这些评论的情感倾向对潜在客户的购买决策产生了直接影响,因此,对电子产品销售评论进行情感分析具有重要的商业价值。通过情感分析技术,可以有效识别评论中的积极和消极情绪,从而帮助商家深入了解产品的优缺点,进而优化其营销策略和产品设计。情感分析的结果不仅为企业提供了有价值的市场洞察,也为消费者提供了可靠的信息支持,帮助他们做出更明智的购买选择。这种分析不仅有助于提升企业的竞争力,还能增强消费者的购物体验,确保他们能找到最符合需求的产品。
实现技术思路
一、算法理论基础
1.1 情感分析
BERT是一种基于变换器架构的预训练语言表示模型,其核心创新在于双向编码能力。与传统的单向语言模型不同,BERT能够同时考虑上下文信息,从而更准确地理解词汇在句子中的含义。BERT的训练过程包括两项关键任务:掩蔽语言模型任务和下一句预测任务。掩蔽语言模型任务通过随机掩蔽输入中的某些词汇,促使模型根据周围上下文来预测这些被掩蔽的词,这样的设计使得模型能够充分利用上下文信息。此外,下一句预测任务则帮助模型捕捉句子之间的关系。这种双重训练策略使得BERT在多种自然语言处理任务中表现出色,包括文本分类、问答系统和命名实体识别等。经过预训练的BERT模型可以通过微调迅速适应特定任务,展现出极强的灵活性和有效性。
长短期记忆网络(LSTM)是一种特殊的递归神经网络(RNN),专门用于处理和预测序列数据。与传统的RNN相比,LSTM通过引入门控机制,有效地解决了梯度消失和梯度爆炸的问题,使其能够捕捉长距离依赖关系。LSTM的基本结构由输入门、遗忘门和输出门组成,分别负责控制信息的输入、保留和输出。这种独特的设计使得模型在训练过程中能够选择性地记住或遗忘信息,从而在时间序列数据和自然语言处理等领域提升了表现。
LSTM的基本单元通过动态调节信息流动,增强了对不同时间步之间依赖关系的处理能力。具体来说,输入门决定当前时刻新信息写入记忆单元的程度,遗忘门控制已有信息的保留程度,而输出门则决定从记忆单元中输出到当前时刻隐藏状态的信息量。在实际应用中,LSTM通常以堆叠方式构建多层网络,以提高模型的表达能力和复杂性,从而能够处理更复杂的序列任务。
LSTM在多个领域表现优异,尤其是在需要处理时序数据的任务上。在自然语言处理领域,LSTM被广泛应用于机器翻译、文本生成和语音识别等任务,能够有效捕捉上下文信息并提升语言模型的准确性。同时,在金融领域,LSTM也被应用于股票价格预测、风险评估等任务,通过分析历史数据捕捉潜在趋势。此外,LSTM还发展出了多种变种,例如双向LSTM和结合注意力机制的LSTM,这些变种进一步增强了模型的性能和适用性,使其在更广泛的应用场景中取得了显著成果。
1.2 目标检测算法
胶囊网络的核心思想在于通过引入胶囊层来替代传统的卷积神经元,从而更有效地处理图像数据并保留特征之间的空间关系。传统的卷积神经网络(CNN)在处理图像时,常常忽略了特征之间的相对位置和空间关系,这对于物体识别、分类等任务的精确性造成了限制。胶囊层由多个神经元组成,其输入为向量而非单一标量,这种设计使得胶囊网络能够捕捉更丰富的特征信息,并保持特征之间的空间关系,从而在面对复杂的视觉任务时表现出色。
在胶囊网络的实现过程中,输入向量首先经过卷积操作,生成初级胶囊的表示。初级胶囊通过动态路由机制将其信息映射到高级胶囊。动态路由机制类似于聚类的过程,其核心在于根据初级胶囊与高级胶囊之间的相似度来决定信息传递的权重。这种机制的灵活性允许胶囊之间的连接强度根据任务需求进行调整,从而有效聚合信息并提高特征的表示能力。高层胶囊经过Squash激活函数处理后,输出的向量不仅代表特征的存在,还能体现特征的相对位置,这增强了模型对图像中物体的理解能力,使其能够更好地捕捉复杂的空间关系。
为了提高胶囊网络在情感分类等任务中的准确率,研究者们对原有结构进行了多项改进。例如,在胶囊网络的动态路由过程中,激活函数的选择显得尤为重要。原有的Squash激活函数仅压缩向量的模长,这可能限制了模型表达的灵活性。因此,改进后的胶囊网络在动态路由中采用了新的激活函数,以更好地保留向量的方向信息并提升特征的表达能力。此外,通过在卷积层中引入多种尺寸的卷积核,胶囊网络能够在初级胶囊层中提取更加丰富的特征,使得最终的高级胶囊输出更加具有区分性。这些改进使得胶囊网络在各种视觉任务中展现了更强的性能,尤其是在需要捕捉复杂空间关系的应用场景中。
二、 数据集
采用爬虫技术从电商平台抓取用户评论,并利用社交媒体获取相关讨论,或者整合已有的公开情感分析数据集,是进行情感分析的有效方法。在抓取评论时,特别关注评论的内容、评分、时间戳以及用户信息等多个维度,以确保所收集数据的全面性和代表性。数据清洗的过程至关重要,包括去除无关信息和噪声数据,例如重复评论、无效字符和广告信息等。为了提高情感分析的准确性,评论需要经过分词处理,去除停用词和标点符号,并进行词干提取或词形还原等处理。这些步骤有助于提取出更有意义的特征,增强模型的表现。评分信息的处理同样重要,可以将评分转换为情感标签,例如,将5星评价标记为“积极”,将1星评价标记为“消极”,并根据需要处理中间评分。这种方式可以使情感分析模型更好地理解用户的情感倾向,为后续的分析和决策提供更为可靠的依据。
import requests
from bs4 import BeautifulSoup
import pandas as pd
import re
from nltk.corpus import stopwords
# 爬虫示例:抓取电商平台评论
def fetch_comments(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
comments = []
for comment in soup.find_all('div', class_='comment'):
content = comment.find('p', class_='content').text
rating = comment.find('span', class_='rating').text
timestamp = comment.find('span', class_='timestamp').text
comments.append({'content': content, 'rating': rating, 'timestamp': timestamp})
return comments
三、实验及结果分析
3.1 实验环境搭建
3.2 模型训练
将从电商平台或社交媒体收集到的评论数据进行清洗,去除重复评论、无效字符、广告信息等噪声数据。对评论文本进行分词、去除停用词和标点符号处理,并进行词干提取或词形还原,以便更好地提取文本特征。确保输入数据的质量,使得后续模型能够有效学习到有用的信息。将评论的评分转换为情感标签,以便于后续模型训练和评估。
import pandas as pd
import re
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
# 假设我们已经有一个DataFrame,包含评论数据
df = pd.read_csv('comments.csv')
# 数据清洗
def clean_text(text):
# 去除广告信息和无效字符
text = re.sub(r'http\S+|www\S+|https\S+', '', text, flags=re.MULTILINE)
text = re.sub(r'\@\w+|\#', '', text) # 去除@和#
text = re.sub(r'[^a-zA-Z\s]', '', text) # 去除非字母字符
text = text.lower() # 转换为小写
return text
# 应用清洗函数
df['cleaned_comments'] = df['comments'].apply(clean_text)
# 分词和去除停用词
stop_words = set(stopwords.words('english'))
stemmer = PorterStemmer()
def preprocess_text(text):
words = word_tokenize(text)
words = [stemmer.stem(word) for word in words if word not in stop_words]
return ' '.join(words)
df['processed_comments'] = df['cleaned_comments'].apply(preprocess_text)
采用LSTM与胶囊网络的结合来进行情感分析。LSTM网络负责处理序列数据的时间依赖性,而胶囊网络则负责更好地捕捉特征之间的空间关系。构建LSTM层以提取评论的时序特征,然后将其输出传入胶囊网络进行进一步特征提取与表示。在胶囊网络中,采用改进的动态路由机制与新的激活函数,以增强模型对于情感特征的表达能力。通过在卷积层中引入多种尺寸的卷积核,提升初级胶囊层的特征提取能力,使得最终输出的高级胶囊更具区分性。
import tensorflow as tf
from tensorflow.keras import layers, models
# 定义LSTM与胶囊网络的组合模型
def build_model(input_shape):
model = models.Sequential()
# LSTM层
model.add(layers.Embedding(input_dim=10000, output_dim=128, input_length=input_shape[1]))
model.add(layers.LSTM(128, return_sequences=True))
# 胶囊网络层(简化形式)
model.add(layers.Conv1D(filters=256, kernel_size=9, activation='relu'))
model.add(layers.MaxPooling1D(pool_size=2))
# 假设胶囊层的输出
model.add(layers.Reshape((-1, 256))) # 变形为胶囊层输入格式
model.add(CapsuleLayer(num_capsules=10, dim_capsule=16, routings=3)) # 自定义胶囊层
# 输出层
model.add(layers.Dense(1, activation='sigmoid')) # 二分类任务
return model
# 编译模型
model = build_model((None, 100)) # 假设输入长度为100
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
对模型进行训练,并在验证集上监测其表现,以确保模型能够有效学习并防止过拟合。训练集用于模型的学习,而验证集则用于评估模型在未见数据上的泛化能力,帮助我们判断模型的实际表现。训练过程中,可以采用合适的批处理大小和学习率,逐步调整模型的权重。为了确保模型的有效性,我们需要在每个训练周期结束后评估模型在验证集上的表现。可以计算多种评价指标,包括精准率、召回率、准确率和F1值等。
from sklearn.metrics import classification_report
# 假设有训练数据train_x, train_y和验证数据val_x, val_y
history = model.fit(train_x, train_y, epochs=10, batch_size=32, validation_data=(val_x, val_y))
# 评估模型
predictions = model.predict(val_x)
predicted_classes = (predictions > 0.5).astype(int)
# 计算和打印评价指标
print(classification_report(val_y, predicted_classes, target_names=['Negative', 'Positive']))
海浪学长项目示例:
最后
我是海浪学长,创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!