【人工智能】基于深度学习的图像去雾算法系统

目录

前言

课题背景和意义

实现技术思路

一、去雾算法理论介绍

1.1 基于图像增强的图像去雾算法

1.2 基于大气散射模型的去雾算法

1.3目标检测算法

二、 数据集

三、实验及结果分析

3.1模型预测

3.2模型训练

3.3模型评估

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于深度学习的图像去雾算法系统

课题背景和意义

       随着计算机视觉和图像处理技术的广泛应用,图像质量对下游任务的影响愈发显著。大气散射、光学衰减和颗粒物等因素常导致室外图像出现雾霾现象,进而降低图像对比度、模糊细节和改变颜色分布,影响目标检测、场景识别、无人驾驶和遥感等实际应用的可靠性。研究高效、鲁棒的图像去雾方法具有重要的理论价值和工程意义。传统的基于物理模型和先验知识的方法在某些场景下效果良好,但在复杂光照条件和非均匀雾状物存在时往往表现欠佳。深度学习技术通过端到端学习复杂映射关系,为图像去雾提供了新的思路,能够在大规模数据上学习到更具泛化能力的特征表达,从而在质量和速度上取得突破。

【人工智能】基于深度学习的图像去雾算法系统

       开展图像去雾算法的研究,不仅可提升单幅图像的视觉效果,还能显著改善后续视觉任务的性能,提高系统在实际场景中的适用性。对城市交通监控、自动驾驶摄像头、卫星遥感影像以及安防系统等具有直接推动作用。研究中涉及的去雾模型、损失函数与训练策略也能为其他图像增强问题提供借鉴,如图像去噪、超分辨率和低照度增强等。构建一种兼顾恢复质量、计算效率与泛化能力的图像去雾算法系统,既有助于推动学术研究的深入,也能促进相关产业应用的落地。

实现技术思路

一、去雾算法理论介绍

1.1 基于图像增强的图像去雾算法

       直方图均衡化是一类经典的图像增强技术,目标是通过调整像素强度分布来提升图像对比度。在去雾任务中,该方法试图通过拉伸或重分布像素灰度,使得因雾而偏灰的图像恢复更丰富的明暗对比,从而在视觉上弱化雾的影响。直方图均衡化的实现相对简单,计算开销低,适合实时性要求较高的应用场景。

【人工智能】基于深度学习的图像去雾算法系统

       直接对全局直方图进行均衡化在处理非均匀雾或局部细节时存在不足。全局均衡化会对亮度分布进行统一处理,可能导致亮区域过曝或者暗区域细节丢失,同时易引入过度增强的噪声和伪影。在实际应用中,常结合局部自适应的直方图均衡化技术,对不同图像块分别进行均衡处理,以兼顾整体对比提升和局部细节保护。为了进一步提高鲁棒性,研究者们提出了结合颜色空间变换和多分辨率策略的改进方法。先将图像转换到对人眼更敏感的亮度分量上进行均衡化,然后再与色彩信息融合回原图,从而减少色彩失真。多尺度处理则能够在不同尺度上分别增强细节和全局对比,缓解单尺度均衡化带来的伪影问题。基于直方图均衡化的去雾方法优势在于简单高效,但在复杂场景下需要与其他技术结合才能达到良好的视觉效果和通用性。

       同态滤波是一种在频域中同时处理反射成分和照明成分的图像增强手段。其基本思想是将图像的乘性成分转换为加性形式后,在对数域进行频域分离,低频部分代表光照成分而高频部分代表反射细节。通过对频谱进行增益调制,可以抑制低频的平滑效应,增强高频细节,从而提升图像清晰度和对比度。这一方法天然适合应对由雾导致的低对比和信息丢失问题。

【人工智能】基于深度学习的图像去雾算法系统

       在实际去雾中,同态滤波能够恢复因散射而模糊的边缘和纹理,但其性能受限于参数选择与频域滤波器设计。滤波器的遮罩形状、截止频率和增益大小直接决定了增强效果和伪影产生的概率。若对低频抑制过度,图像可能出现饱和或环状伪影;若抑制不够,则去雾效果不明显。如何自适应选择滤波参数以适应不同场景,是该方法优化的关键。同态滤波在处理彩色图像时通常需要考虑色彩一致性问题。对亮度通道单独处理后与色彩通道融合的策略可以在一定程度上减少色偏,但在强雾或高噪声环境中仍可能出现色彩失真。为了解决这些问题,研究者提出结合空间域约束、局部对比保持项或后处理平滑机制的改进方案,以在增强细节的同时抑制伪影和色彩异常,提升整体视觉自然度。

       Retinex理论基于人类视觉系统对亮度与反射的分离假设,将图像视为光照成分与反射成分的乘积。去雾任务中,Retinex方法通过估计并移除光照部分,从而恢复物体表面的反射细节和真实色彩。相比于简单的对比度增强,Retinex更强调色彩恒常性和局部对比,使得恢复结果在视觉感知上更自然。

S\left ( x,y \right )\doteq R\left ( x,y \right )L\left ( x,y \right )

       Retinex方法通常采用多尺度处理,通过在不同尺度上估计光照并合成最终反射图,从而同时兼顾全局光照平衡和局部细节恢复。多尺度策略有助于解决不同尺寸结构因雾造成的模糊和对比损失问题,并能在保持整体色彩一致性的同时增强边缘和纹理。Retinex的局部处理特性使其在处理光照不均或局部浓雾时优于全局均衡方法。Retinex方法对噪声敏感,且光照估计不准确时会引入伪影或色彩偏差,为此,常结合平滑约束、边缘保持滤波或先验模型来约束光照估计的平滑性与边界位置,以减少过度强化或细节丢失的问题,将Retinex与深度学习结合,通过学习更鲁棒的光照与反射分离策略,从而在复杂雾霾条件下获得更稳定的去雾效果。

1.2 基于大气散射模型的去雾算法

       基于暗通道先验的方法认为在晴晰无雾的自然图像中,某些局部区域至少在一个颜色通道上存在非常低的像素值,这一先验在含雾图像中会被雾气提升。利用这一统计性质,该类方法首先计算图像的暗通道图,从中估计场景的全局大气光照强度,再根据大气散射模型推导出传输图,从而恢复无雾图像。该方法由于利用了简单而有效的图像先验,能够在保持色彩和细节方面取得显著提升。

J_{dark}(x) =\min\limits_{y \in \Omega(x)}( \min\limits_{c \in \{r,g,b\}} I_c(y))

        J_{dark}(x)表示像素x的暗通道值,\Omega(x)是以x为中心的局部区域,I_c(y)是像素y在颜色通道c(红、绿、蓝)上的值。这种方法的优点在于不需要训练数据,且在许多室外场景下效果显著,尤其是在中到重雾条件下对远处物体的恢复能力较强。然其估计传输图时存在粗糙性问题,直接使用会导致恢复图像出现块状伪影和细节损失,后续通常通过边缘保持的滤波器对传输图进行细化,以保证深度边界和物体轮廓在去雾后仍然清晰。暗通道先验在某些特殊场景下可能失效,例如图像中大量亮色或白色物体、天空区域占比过大或低对比纹理稀少时。为了解决这些局限性,研究者提出引入颜色线性模型、引导滤波和场景结构先验等改进方法,并结合多尺度策略或预处理步骤以提高估计稳健性。暗通道先验方法奠定了基于先验的单幅图像去雾研究基础,影响深远。

       基于边界约束和上下文正则化的方法在传输图估计过程中引入了更丰富的结构信息。其核心思想是在传输图估计中加入边缘与纹理约束,通过图像的边界信息来保持物体轮廓的一致性,同时利用上下文正则化项对传输图进行平滑处理,抑制噪声与伪影。与单纯基于局部统计先验的方法相比,这种方法能更好地维护细节结构并应对复杂场景。

\min\limits_{J} \left( ||I - J||_2^2 + \lambda R(J) + \gamma ||\nabla J||_2^2 \right)

       构建能量函数,将数据项、边界约束项与上下文正则化项融合为一个优化问题。通过求解该优化问题,可以在保留显著边缘的同时去除不合理的传输波动。上下文正则化可以采用图切割、条件随机场或基于相似性加权的平滑手段,以利用图像像素之间的相互关系来抑制随意的传输起伏,从而得到更连贯的恢复结果。不同场景下边界权重与正则化强度需自适应调整,否则可能出现过度平滑或边界残留问题。为提升效率和自适应性,研究者提出基于快速近似求解的算法或将边界与上下文信息通过学习方式进行融合集成,使得传输估计既保持结构感知,又兼顾计算可行性,进而在实际图像去雾中取得更稳健的表现。

1.3目标检测算法

       目标由传统的基于先验的分步恢复转为端到端的整体映射,成像过程模型化为观测图像、场景辐射和透射率之间的数学关系,网络通过学习在输入空间到目标参数或恢复图像之间的非线性映射来替代显式的中间估计。设计出发点在于利用深度卷积对局部纹理特征和较大感受野上下文信息的联合表征能力,从含雾像素中提取出与透射率和大气光相关的隐含模式,进而实现对雾致衰减和色偏现象的补偿。理论上,端到端学习能够通过最小化恢复误差整体优化参数,使得网络在样本覆盖的场景中自动逼近复杂的逆模型,降低对人为设定规则和参数的依赖,提高对多变光照和非均匀雾条件的适应性。

【人工智能】基于深度学习的图像去雾算法系统

       结构层面采用序列化卷积块、残差单元与跳跃连接以兼顾低层细节与高层语义,必要时引入多尺度分支、膨胀卷积或注意力机制以拓展感受野并突出重要区域。输出可为透射率场与大气光的分离估计,也可直接为恢复图像,两种策略在损失设计上各有侧重。像素级重建误差保证整体亮度和颜色一致性,边缘保持项约束梯度结构以防止边缘模糊,感知损失在高层语义域评估纹理与结构相似性以提升视觉真实感,对抗性损失用于增强细节分布的自然性。训练样本多由无雾图像经物理散射模型合成,合成策略需随机化深度分布、大气光和噪声模型以覆盖多样场景。为缩小合成与真实域差距,常用混合训练、少量真实样本微调、领域自适应或对抗训练等手段;训练技巧包括学习率调度、权重正则化、批量归一化與早停策略,以及在训练过程中对不同损失项进行权重调整以平衡亮度与细节恢复。

f^{(l+1)}(x)=\sigma\left(\sum_{y} W^{(l)}(y),f^{(l)}(x-y)+b^{(l)}\right)

       端到端流程简洁、推理速度快且易于在大规模数据上提升性能,适合实时处理与视频流应用;网络可借助数据驱动自动学习复杂光照与散射特性,减少人工先验的局限性。局限包括对训练数据分布的高度依赖、在未见场景或极端光照条件下可能出现色偏或细节丢失,以及浅层或轻量化结构在捕获长程上下文与空间一致性方面的不足。改进方向包括扩大训练集多样性与真实样本占比、融合多尺度与注意力机制以增强全局语义与局部细节的协同、引入多任务监督同时估计深度或边界以提供结构先验、并采用感知级与对抗性损失以提升视觉质量。

       多尺度卷积网络(MSCNN)核心思想在于同时在多个尺度上提取图像特征,以捕捉不同尺寸对象和雾分布的影响。传统的卷积神经网络通常只能在固定的尺度上进行特征提取,这可能导致对不同尺寸物体的理解能力不足,尤其是在复杂场景中,物体的尺度和雾的分布变化显著。人眼在观察场景时,会自然而然地关注不同距离和不同大小的物体,从而形成对场景的全面理解。MSCNN通过设计金字塔式或并行多分支的网络结构,能够在粗尺度上获取全局的透射趋势和大气光估计,而在细尺度上则专注于恢复图像的纹理与边缘细节。这种多尺度的特征提取方式使得模型在处理复杂的图像信息时,能够有效地提取到重要的上下文信息,从而提高图像去雾的质量。在MSCNN中,每个分支网络的设计都针对特定的尺度进行优化。例如,粗尺度分支可能使用较大的卷积核和较少的下采样操作,以获得全局的特征和大致的雾分布;而细尺度分支则可能采用更小的卷积核和更多的上下采样操作,以捕捉细节和局部特征。通过这种方式,MSCNN能够在一个统一的框架内同时处理全局信息和局部细节,显著提高了图像去雾的效果。

【人工智能】基于深度学习的图像去雾算法系统

       MSCNN通常由若干尺度分支组成,每个分支由卷积块和池化或上采样模块构成。这些模块的组合不仅有助于调整感受野,还能提取对应尺度的特征。例如,较低尺度的分支通过池化层减小特征图的尺寸,从而获得更为抽象的特征表示;而较高尺度的分支则通过上采样操作恢复特征图的尺寸,以便与低尺度特征进行有效的融合。在特征融合的过程中,跨尺度连接和特征融合模块起到了至关重要的作用。这些模块的设计目的是为了确保不同尺度的信息能够有效整合,从而保持局部细节的同时兼顾全局一致性,MSCNN能够在去雾过程中充分利用不同尺度的信息,避免了信息的冗余和竞争,进而提升了去雾效果的整体质量。MSCNN在特征融合过程中往往会引入注意力机制,通过自适应地加权不同尺度的特征来进一步提高模型的表现。注意力机制使得网络能够根据输入图像的特征动态调整不同尺度特征的重要性,从而更有效地提取关键信息。自适应加权方法提高了特征融合的效率,还增强了模型的鲁棒性,使其能够更好地应对复杂场景下的挑战,MSCNN通过结合多尺度特征提取、特征融合与优化策略,展现了在图像去雾任务中的优越性。

       多合一卷积网络的设计理念是将大气散射模型中的多个步骤整合到一个统一的网络中,直接从含雾图像预测去雾结果或核心参数,从而实现端到端的简洁推理。AOD-Net通过在网络内部融合传输估计与直接恢复的模块,减少了传统方法中对中间显式估计的依赖,提升了计算效率与实现简便性。该方法强调轻量化结构与实时性能,适合资源受限的应用场景。AOD-Net的优点包括结构紧凑、端到端训练和较好的运行效率。网络通过可学习的卷积核和非线性变换自动适配不同图像内容,能够在一次前向传播中完成从含雾输入到清晰输出的映射,从而减少了中间处理带来的误差累积。实验表明,多合一结构在视觉质量与速度之间取得了良好折衷,尤其适用于视频去雾等需要连续处理的任务。

       多合一方法纵然在实用性上有显著优势,性能仍受限于训练数据的多样性与损失设计的合理性。直接预测恢复图像要求网络在颜色保真和细节还原上有更高能力,且对异常场景的鲁棒性需要通过更丰富的训练样本或更健壮的正则化方法来保障,为此探索结合感知损失、多任务监督和域适应策略,以提升网络在不同实际场景下的泛化能力和稳定性。

二、 数据集

    数据集的制作首先需要大量的图像数据,这些数据主要来源于以下途径:

  • 利用现有的公开数据集,如Foggy Cityscape、RESIDE等,这些数据集专门用于雾霾天气下的图像处理,包含了各种场景的雾霾图像及其对应的清晰图像。
  • 在特定环境下进行图像采集,使用不同类型的相机和设置,以获得在不同天气条件下的雾霾图像。这种方法不仅能增加数据集的多样性,还能模拟实际应用中的各种情况。
  • 对清晰图像添加雾霾效果生成合成图像,利用图像处理技术可以模拟不同浓度和类型的雾霾效果,从而丰富数据集。

        图像预处理包括调整图像大小、标准化和增强。调整图像大小是为了确保所有图像具有相同的分辨率,这在深度学习模型中是至关重要的,因为大多数模型要求输入的大小一致。标准化步骤则有助于使来自不同来源的图像具有统一的格式,便于后续的模型训练。通过将图像的像素值缩放到特定范围(如0到1),可以提高模型的收敛速度和稳定性。增强方法包括旋转、翻转、缩放、亮度调整、对比度增强和颜色变化等。这些技术不仅可以增加训练数据的多样性,还能帮助模型更好地适应不同的输入条件。通过模拟实际应用中可能遇到的各种情况,增强技术可以提高模型的泛化能力,从而在实际场景中表现得更加稳健。

       无效图像可能由于模糊、过曝、噪声过大或不相关内容而影响训练效果。为了提高数据集的质量,可以通过自动化的筛选算法快速识别并剔除这些图像,例如,利用图像清晰度检测算法,可以自动计算图像的清晰度,并设定阈值,过滤掉不符合标准的图像。利用图像质量评估指标也能有效辅助这一过程。将数据集分为训练集、验证集和测试集是标准的做法,通常的比例为70%训练集、15%验证集和15%测试集。训练集用于模型的训练,是模型学习特征的主要数据源;验证集用于在训练过程中进行超参数调优和模型选择,以便及时调整模型参数,防止过拟合;测试集则用于最终评估模型的性能,确保模型在未见数据上的表现。

三、实验及结果分析

3.1模型预测

模型预测的步骤包括加载训练好的模型、预处理输入数据、进行预测以及后处理预测结果。每个步骤都需要注意细节,以确保最终预测结果的准确性和有效性。

加载训练好的模型:使用适当的深度学习框架,可以方便地加载已保存的模型,确保可以重用之前训练得到的模型参数和结构,从而避免重新训练所需的时间和计算资源。使用TensorFlow/Keras框架加载模型,路径应指向已保存的模型文件示例如下所示:

from tensorflow.keras.models import load_model

model_path = 'path_to_trained_model.h5'
model = load_model(model_path)

预处理输入数据:对图像进行调整大小、归一化处理以及可能的其他增强操作。调整图像大小是为了符合模型输入的要求,而归一化处理则有助于提高模型的收敛速度和预测准确性。加载图像、调整其大小并进行归一化处理代码如下所示:

from tensorflow.keras.preprocessing.image import img_to_array, load_img
import numpy as np

input_image_path = 'path_to_input_image.jpg'
image = load_img(input_image_path, target_size=(image_height, image_width))
image_array = img_to_array(image) / 255.0  # 进行归一化处理
image_array = np.expand_dims(image_array, axis=0)  # 增加批次维度以符合模型输入要求

模型预测:使用加载的模型对预处理后的数据进行推断,输出的结果通常为模型的预测值。这一过程涉及到模型的前向传播计算,通过输入数据生成相应的输出。后处理预测结果是将模型输出格式化为可视化或可存储的形式。在图像去雾的应用场景中,通常需要将预测结果反归一化,并以图像的形式展示或保存。反归一化的过程将像素值转换回原始范围,以便于展示。以下代码示例展示了如何反归一化预测结果,并将其保存为图像文件。

import matplotlib.pyplot as plt

predicted_image = (predicted_image * 255).astype(np.uint8)  # 将像素值反归一化至0-255范围
plt.imshow(predicted_image)
plt.axis('off')  # 关闭坐标轴显示
plt.savefig('path_to_output_image.png', bbox_inches='tight')  # 保存预测结果为图像文件

3.2模型训练

图像去雾是一项重要的计算机视觉任务,旨在通过去除雾霾影响,提高图像的可见性和质量。常用的深度学习框架包括TensorFlow和PyTorch,这些框架提供了丰富的工具和模块,便于构建、训练和评估深度学习模型。常用的库包括TensorFlow、NumPy、Matplotlib等。这些库提供了数据处理、模型构建和可视化的基础功能。在设置环境时,确保所有库的版本兼容,能够充分利用硬件加速,提升训练效率。

import tensorflow as tf
from tensorflow.keras import layers, models

# 设置GPU设备
physical_devices = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)

加载预训练模型并启动训练是模型构建的重要环节,通常会使用迁移学习,加载已有的预训练模型,以加速训练过程。通过微调预训练模型,可以有效利用已有的特征提取能力,提高模型的性能。

base_model = tf.keras.applications.VGG16(weights='imagenet', include_top=False, input_shape=(image_height, image_width, 3))

# 添加自定义层
x = layers.Flatten()(base_model.output)
x = layers.Dense(256, activation='relu')(x)
outputs = layers.Dense(3, activation='sigmoid')(x)  # 输出层,假设为RGB三通道

model = models.Model(inputs=base_model.input, outputs=outputs)
model.compile(optimizer='adam', loss='mean_squared_error')

损失函数与评价指标的选择对模型训练至关重要。损失函数用于衡量模型预测值与真实值之间的差距。在图像去雾任务中,常用的损失函数包括均方误差(MSE)和结构相似性指数(SSIM)。选择合适的损失函数能够有效引导模型优化,提高去雾效果。

def custom_loss(y_true, y_pred):
    mse = tf.reduce_mean(tf.square(y_true - y_pred))  # 均方误差
    return mse

model.compile(optimizer='adam', loss=custom_loss)

3.3模型评估

模型评估过程中,使用PR曲线可以直观地展示模型在不同阈值下的表现,PR曲线能够有效衡量精度与召回率之间的平衡,对于不平衡数据集尤为重要,PR曲线可以帮助评估模型在不同条件下的处理能力。

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score

y_true = [...]  # 真实标签
y_scores = model.predict(X_test)  # 模型预测
precision, recall, thresholds = precision_recall_curve(y_true, y_scores)

plt.plot(recall, precision)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Precision-Recall Curve')
plt.show()

F1分数是一项综合性评价指标,结合了精度与召回率,能够有效反映模型的整体性能,在处理不平衡数据时,能够提供更可靠的性能评估。较高的F1分数表示模型取得了良好的平衡。

from sklearn.metrics import f1_score

f1 = f1_score(y_true, (y_scores > 0.5).astype(int))  # 假设阈值为0.5
print(f'F1 Score: {f1}')

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值