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Earthquake Control: An Emerging Application for
Robust Control. Theory and Experimental Tests

Diego Gutiérrez-Oribio, Georgios Tzortzopoulos, loannis Stefanou and Franck Plestan

Abstract—This paper addresses the possibility of using
robust control theory for preventing earthquakes through
fluid injections in the earth’s crust. The designed robust
controllers drive aseismically a fault system to a new equi-
librium point of lower energy by tracking a slow reference
signal. The control design is based on a reduced-order
nonlinear model able to reproduce earthquake-like instabil-
ities. Uncertainties related to the frictional and mechanical
properties of the underlying physical process and external
perturbations are considered. Two types of controllers are
derived. The first one is based on sliding-mode theory and
leads to local finite-time convergence of the tracking error
and rejection of Lipschitz w.r.t. time perturbations. The
second controller is based on LQR control and presents
global exponential stability of the tracking error and rejec-
tion of Lipschitz w.r.t. states perturbations. Both controllers
generate a continuous control signal, attenuating the chat-
tering effect in the case of the sliding-mode algorithms. The
developed controllers are tested extensively and compared
on the basis of numerical simulations and experiments in
the laboratory. The present work opens new perspectives
for the application of robust nonlinear control theory to
complex geosystems, earthquakes and sustainable energy
production.

Index Terms— Controlling earthquakes, Stability of non-
linear systems, Robust control, Sliding-Mode Control.

[. INTRODUCTION

arthquakes are dynamic instabilities that occur in the
E earth’s crust. 65% of the most catastrophic earthquakes
happen at depth up to 12 km and are of natural causes [1].
However, earthquakes also occur due to anthropogenic causes.
It is nowadays established that injecting fluids in the earth’s
crust can reactivate seismic faults, leading to important earth-
quake events (see [2], [3] and [4], to name a few examples).
In this paper, fluid injections are seen from another perspec-
tive. Instead of considering them as an earthquake triggering
mechanism, they are seen as an input to a dynamical system,
which can stabilize it and achieve tracking over a reference
signal, if it is adequately designed. This dynamical system
is the physical process leading to earthquake instabilities and
it is characterized by important nonlinearities due to friction.
Moreover, it can present many uncertainties and unmodelled
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dynamics, that a successful control scheme has to compensate.
Finally, unlike many existing applications of control theory
that target decreasing the response time of the system, here the
aim is the opposite, i.e., to slow down the system dynamics.
The above mentioned characteristics of this system result in a
challenging problem for control theory, with important appli-
cations in energy production (e.g., oil, gas, deep geothermal
energy, and COs sequestration) and earthquake prevention.

Existing strategies for earthquake control are very limited
and ad-hoc. One can refer, for instance, to the field experi-
ments in Rangely, Colorado, US, [5], where seismicity was
reduced by turning off the pore pressure. In Dale, New York,
US, where earthquakes of magnitude 1 to 1.4 were arrested
by dropping the top hole pressure below 5 MPa [6]. More
recent field experiments involve the well monitored tests by
[7]1, [8]. However, as mentioned above, all these experiments
were based on trial and error and they were not based on
control theory.

Recently, an LQR control was designed to stabilize and
perform tracking of an earthquake modelled by a MIMO
system [9], whereas a double-scale asymptotic approach was
employed to design a transfer function-based control in [10].
These first applications of control theory to this problem have
shown that earthquakes could be controlled, at least from a
mathematical point of view.

The objective of this paper is twofold. First, to evaluate
the performance of different controllers and, second, to test
them in the laboratory with a specially designed apparatus
[11]. The design of the controllers is based on a reduced
model for earthquakes. This reduced-order model establishes
an average behaviour of a single earthquake fault (see [1],
among others). It consists of a single mass that can slide
on a rough surface under friction. The frictional interface is
usually a complex structure (see [12], [13]), where various
physico-chemical phenomena take place during seismic slip
(see [1], [14]-[16]). As a result, the friction coefficient and
its weakening, not only depend on the slip and the slip-rate,
but also on the evolution of the microstructural network, the
grain size, the presence and pressure of interstitial fluids, the
temperature, time, the reactivation of chemical reactions and
other multiphysics couplings (see [17]-[20]).

All these complex phenomena induce the presence of uncer-
tainties and/or perturbations to the plant. As a consequence,
they need to be compensated by a robust controller able to
obtain a slow-aseismic response. A classic robust approach
versus constant perturbations, is the integral action (see [21,
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Chapter 12]). Among many robust control approaches, one
can also cite the sliding-mode theory [22], [23]. This type
of control is known for being insensitive to bounded and
matched perturbations, leading to finite-time convergence.
Sliding-mode controllers are also known for the simplicity
of their gains tuning. The problem with these controllers
though is the use of a discontinuous function, sign, that may
lead to the so-called chattering effect, possibly damaging the
actuators. Recently, in order to address the above mentioned
drawback, the Continuous Higher-Order Sliding-Modes Al-
gorithms (CHOSMA, see [24]-[26]) have been developed to
keep the interesting features of the sliding-mode algorithms
(compensation of Lipschitz w.r.t. time perturbations in finite-
time), while using a continuous control signal.

In this paper, two control strategies are proposed to achieve
a slow-seismic response: the first one is based on CHOSMA
and the other based on a Linear Quadratic Regulator extended
with integral action (e-LQR based on the original LQR control
in [27]). The former is robust against Lipschitz w.r.t. time
perturbations, while the latter is robust against Lipschitz w.r.t.
state perturbations, presenting both continuous control signal.
The designed controllers stabilize and reduce the natural
response time of the system, making the energy dissipation
to be many orders of magnitude slower compared to a real
earthquake event. This is an uncommon paradigm in control
theory, where usually the objective is to drive the states
of the system to the origin as fast as possible. Finally, to
test the feasibility of the presented algorithms, simulations
and experimental confirmation using a real laboratory test
benchmark, able to reproduce earthquake-like instabilities, are
presented. This allows testing the controllers and comparing
their performance.

The outline of this work is as follows. The description
of the reduced-order model for reproducing earthquake-like
instabilities, its instability condition, and the control objectives
are given in Section II. The experimental setup is shown in the
same section, while the design of the robust control strategies
is detailed in Section III. Simulations and experimental results
are shown in Section IV, and concluding remarks are made in
Section V.

A. Preliminaries

Throughout the text, the term “Lipschitz w.r.t. the time/state
function” is used to call a function that fulfils a Lipschitz
condition with respect to the time/state. Let us consider the
time-varying differential equation

&= f(t (1), t = to,

where x(t) € R™ is the state vector; f : R>g x R” — R" is
a function that can be discontinuous, measurable with respect
to ¢, and f(t,0) = 0. The initial condition z(ty) € R™ at time
instant ¢y € R is denoted as zo. The solution of the system
is understood in the Filippov’s sense (see [28]). Let (2 be an
open subset of R™, such that 0 € Q.

Definition 1: [21], [29]. The origin, x = 0, of the latter
system is said to be:
e Locally Stable (LS) if for any € > 0 there is 6 = (¢, t9) > 0

such that if ||zg|| < 0 then ||z(t)|| < e for any 2y € ) and
for all t > tg.

e Locally Asymptotically Stable (LAS) if it is LS and there
is ¢ = ¢(tp) > 0 such that if ||zo|| < ¢ then z(¢) — O for any
zo € Q and for all ¢t > tg.

e Locally Exponentially Stable (LES) if it is LAS and there
are k > 0, A > 0 such that ||z(t)|| < k||zo||e %) for
any xo € {2 and for all ¢ > t,.

e Locally finite-time Stable (LFTS) if it is LAS and z(¢) =0
for all t > T'(to,x0), where T : R>g x R™ — R is called
the settling-time function.

If @ = R”, then z = 0 is said to be Globally Stable
(GS), Globally Asymptotically Stable (GAS), Globally Ex-
ponentially Stable (GES), Globally finite-time Stable (GFTS),
respectively.

The definition of weighted homogeneity is introduced to be
used in the sequel.

Definition 2: [30], [31]. Consider the vector x € R™. Its
dilation operator is defined as ATz := (e"xy,....,e™mxy,),
Ve > 0, where r; > 0 are the weights of the coordinates
and »r = (r1,...,7,) is the vector of weights. A function
V :R™ — R (or a vector field f : R® — R", or vector-set
F(z) C R™) is called r-homogeneous of degree m € R if the
identity V(A?r) = €™V (x) holds (or f(Alz) = e™A” f(x),
or F(Alz) = e™AlF(x)).

The following result is well-known for continuous homo-
geneous functions (see [26], [32]), and can be extended to
semi-continuous functions [33]:

Lemma I: Letn : R®™ — R and v : R — R be two r-
homogeneous and upper semi-continuous single-valued func-
tions, with the same weights r = (r1, ..., 7, ) and homogeneity
degree m > 0. Suppose that y(x) < 0 in R™. If

{z € R"\ {0} : y(x) = 0} € {w € R" \ {0} : () < 0},

then there exists a real number A\* and a constant ¢ > 0 so
that, for all A > A\* and for all z € R™ \ {0} the following
inequality is satisfied 7(x) + My(z) < —c|[z[[".

Define the function [-|7 := | - |7sign(-), for any v € R>g
1 x>0
with sign(z) = ¢ [-1,1] z=0 .
-1 <0

The following Lemma is simple (just monotonicity) but
useful

Lemma 2: [34] Consider the real variables z, v, it is always
true that sign ( [z + y)? — [yJB) =sign (z), B>0.

[I. PROBLEM STATEMENT

Two scenarios for earthquake modelling used in this paper
are presented in this Section. The first one is a reduced
model of a real earthquake on which the control designs
are performed and numerical simulations are made, whereas
the second one, is a novel experimental setup designed to
reproduce and then control earthquake-like instabilities in the
laboratory.
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A. Reduced Model for Earthquakes

The dynamics of earthquakes can be represented, in aver-
age/energetical sense, with the spring-slider analogue system
(see [1], [9], [10], [35], [36]) depicted in Fig. 1.

average pressure
over a seismic fault
done to overburden

/
O'n mobilized mass of rocks

during an earthquake apnarent elasticity

of the host rock

b
injection\‘ Voo
i —> far-field motion
of fluid 7’]
of the tectonic plates
i apparent viscosity
of the host rock
A ) slip and
eftfecttlve Tfrictional slip-rate
contact area T
Fig. 1. Reduced mechanical model for reproducing earthquake-like
instabilities.

This mechanical system consists of a mass, m, which slides
on a frictional interface (equivalent to a seismic fault). The
mass is connected to a Kelvin-Voigt configuration composed
by a spring with stiffness k (equivalent to the apparent elas-
ticity of the host rock) and a dashpot with damping coefficient
n (equivalent to the apparent viscosity of the host rock).
At the other extremity of the Kelvin-Voigt configuration a
constant velocity, v, is applied (equivalent to the far-field
motion of the tectonic plates). It is assumed Coulomb friction
with a friction coefficient ju(8,) that depends on the slip &
(block’s displacement) and the slip-rate ) (block’s velocity).
According to Terzaghi’s principle, the frictional stress T takes
the following form: T = u(d,4) (o — p), where o/ is the
constant/reference average effective stress (e.g., the overburden
due to the weight of the rocks and the interstitial fluid pressure)
and p the fluid pressure developed due to injecting fluid. p
is the input to the system for which the controllers will be
designed and tested.

According to [1] and [35], approximately a rock mass of
volume L2 is mobilized during an earthquake event, where
L, is equal to the length of the seismic fault. Therefore,
the mobilized mass during an earthquake event is m ~ pL3.,
where p is the density of the surrounding to a seismic fault
rocks. The fault length can be calculated as L,. = G/k, where
G is the shear-modulus of the host rock and k = k/r2, its
apparent normalized elastic stiffness. The damping coefficient
n is given by n = 2¢mw,,, where ( is the damping ratio and
Wy, = \/k/_m, the natural frequency of the reduced system.

Applying the force balance equation, system in Fig. 1 can
be represented by the following mathematical model

mé = —u(6,0) A0, —p)+ k(6o —8) +1(Veo — )+ (8,8, 1),
ey
where A ~ L2, is the effective contact area (fault rupture
area), 0o = Usot the displacement at the extremity of the
Kelvin-Voigt configuration, § the acceleration of the mobilized
block, and ¢.(8,4,t) is a perturbation affecting the system,
e.g., an external perturbation or unmodelled dynamics due to
the complex frictional phenomena.
In this paper, the friction coefficient (0, 5) is assumed to
fulfil

0 < fires < 11(6,0) < tmaz, (2)

where the constants fiyes and pi;,q, are given. Such assumption
is fulfilled by friction laws used in fault mechanics, like the
slip-weakening friction law [35], the slip-rate weakening law
[37], and the rate-and-state friction law [38], [39]. Notice that
the exact frictional rheology is not known in reality, which
needs the design of robust controllers, as will be done in
Section II1.

Additionally, according to [35], the seismic magnitude M,
is defined as

2
M, = 3 log,o My — 6.07, M,y = L3 Ar, 3)

where M is the seismic moment measured in [Nm] and At =
(,UJmaz - ,UJres)Un/-

B. Shifted System and Instability Condition

Defining the state variables z; = ¢ and 29 = 5, the state
representation of system (1) is
Z.l = Z2,

Zy = _N(Zla 22)N(U;z - p) + ]%(600 - Zl) + ﬁ(voo - 22)
+ Sbe(zlu 22, t)7
where N = Alm, k=

S"e(ZhZ?vt)/m.

The set of equilibrium points (27, 25) of the above system
in open loop and without perturbation, i.e. ¢¢(z1, 22,t) = 0,
is described by

k/m, ﬁ = 77/m and 9276(2’1,22,15) =

= (et 25) T ol b+ T,
Note that the equilibrium (27, 23) depends on the friction
coefficient (25, z3). In this paper, the controller design will
be made when the system reaches the above equilibria, which
can be unstable. The maximum value of the friction coefficient,
1(0,0) = fimaz, is considered for being on the verge of slip
and the system is shifted as follows. Setting z; = 0 and the
new state variables 1 = z1 — 2] and x2 = 23 — 23, the shifted
system reads as

T = T,
by = —[p(w1, 22) — NG}, + p(wr, 29) Np — kg — iy
+ @e(xla T2, t)v
“)

where p* = p(0,0) = pmaz. Note that if @.(x1,29,t) = 0,
system (4) has an equilibrium point located at the origin z] =
x5 = 0 in open loop.

In order to analyse the stability of the origin of system

(4) without the perturbation term @, (x1,x2,t), consider its
Jacobian matrix J(z1,x2) evaluated at the origin as

J(0,0) =
[ 0 1
_k— No! 1 _h_ O )
"0 aya)=00) | P%2l(@y,a2)=(0.0)
where the conditions to have an unstable origin are

k< —Acd! Op

" 83:1

(11112):(010) '

5)

(m17m2):(010)



GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022

The above inequalities are in accordance with the nominal
studies of [1], [9], [40] and they show that dynamic instability
will take place when the elastic unloading of the springs or the
apparent viscosity of the host rock cannot be counterbalanced
by friction.

C. Experimental setup

A novel experimental apparatus for reproducing and con-
trolling earthquake-like instabilities in the laboratory, has been
designed (see [11], [41], [42]). This experimental setup is
depicted in Fig. 2.

Two loading systems are used in order to apply shear
(displacement controlled by the vertical loading system) and
normal (pressure controlled by the horizontal loading system)
stresses to the sheared interfaces. The horizontal loading
system consists of an inflatable rubber bag whose pressure
can be controlled, in real-time, through a fast response electro-
pneumatic pressure regulator. This system can simulate fluid
injection/extraction into/from the fault interface by properly
adjusting the (air) pressure in the rubber bag to desired levels
resulting in variations of the effective normal stress in the
sheared interfaces. The vertical loading system consists of
a press compressing slowly a linear-elastic spring, which
simulates the stored energy of the earthquake.

The specimen consists of three 3D printed samples of
sand particles (see [43] for more details about this surrogate
material and its characterization) and it is located below
the spring. The middle block of the specimen simulates the
mobilized mass of the rocks and its frictional interfaces with
the adjacent blocks the seismic fault. No specific elements are
used for damping, which is provided naturally by the various
components of the experimental setup and the specimen itself.
The friction coefficient between the blocks can be measured
in the experimental setup (see [41], [43]). However, these
tests are not presented here because the objective is to design
robust controllers that are agnostic to the frictional rheology.
The frictional rheology in a real fault might depend on the
slip, slip-rate and time, but also in thermal, chemical and
other processes. Moreover, due to heterogeneity, the frictional
properties of faults involve uncertainties and contrary to a
laboratory experiment, they cannot be inferred with high
accuracy. Therefore, successful controllers must be able to
compensate all these sources of uncertainties and to be able
to obtain slow aseismic response with minimum information
about the system.

For measuring the applied vertical load and the horizontal
forces, load cells are used. For measuring the average slip
of the middle block, two vertically placed Linear Variable
Differential Transformers (LVDTs) are used. Their readings
are averaged to eliminate parasitic measurements related to
possible rotation of the middle block. Finally, the pump for
controlling the pressure in the rubber bag simulates the fluid
injection to the fault and can supply pressures up to 1 [MPa].
Note that in this setup, increasing the pressure in the rubber
bag corresponds to decreasing the pressure, p, in the fault
(see also eq. (1)). However in the following, the distinction
between pressure in the bag and pressure in the fault is not

made and the results are presented in function of the pressure
at the fault (i.e., p = —ppagy). All these sensors are connected
to a data acquisition device processed using the LabVIEW
software, which processes the data with a sampling rate of
1 [ms]. LabVIEW also allows the implementation of our
robust controllers for controlling earthquake-like instabilities.
See [41, Chapter 5] for more details about the experimental
setup.

Remark 1: The electro-pneumatic pressure regulator has a
response rate of 1 [ms]. It is controlled by a PID algorithm,
which is faster than the response rate of the pump. The
operating system of the computer in which the controllers
were implemented is of 1 to 2 [ms]. The above characteristics
times are much lower than the characteristic time of the system
instability, which is 50 [ms].Therefore, the actuator dynamics
(the pump) was not taken into account in the system (1).

D. Control Objective

As shown in system (4) and Fig. |, the fluid pressure p is the
only input acting on the dynamics of the mechanical system. In
a real-scale scenario, fluid injections in the earth’s crust change
the fluid pore pressure over seismic faults [8]. As shown
in [36] among others, this can destabilize the fault system
and induce/trigger larger earthquakes. In order to illustrate
this phenomenon, two numerical simulations of the dynamical
system (4) are shown in Fig. 3. The first one has no input
pressure (Natural earthquake using p = 0 [MPa]) and the
second one has a constant pressure (Induced earthquake using
p = 5 [MPa]). Both simulations were made starting from the
origin and with an external perturbation $, = 3.2 x 1071%
[m/s?] applied at ¢ = 0 [s] just to move the states out of the
equilibrium point. Note how an earthquake event (6 evolving
with high rate) has been triggered in both cases, but a larger
and faster one was obtained on the second case where p > 0.
The system parameters used for these simulations are shown
in Table I (Real-fault column).

In the previous paragraph, the fact that open-loop fluid
injections in the earth’s crust might risk to stimulate large
seismic events is highlighted. To prevent this, one could
adequately adjust the fluid pressure (input p) by employing
control techniques in order to stabilize the system (4) origin
and/or track a reference input signal, releasing the stored
elastic energy smoothly (§ evolving slowly) and not abruptly
as shown above.

From a mathematical point of view, a reduced-order model
for earthquakes like the system (1) captures well the low-
frequency instabilities, which are of most importance, because
they carry most of the seismic energy. For the experimental
confirmation, the designed apparatus in Fig. 2 reproduces
these low-frequency instabilities and successfully designed
controllers must be able to dissipate them slowly. See [42],
[44], for theoretical works for the control of more detailed
models of the physical process of rupture of a single mature
seismic fault.

Therefore, the objective in the Section III is to design
a control law p driving § and § in system (4) to follow
some desired predefined references of slow slip rate, 7(t), 7(t),
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Fig. 2. Experimental apparatus for reproducing and controlling earthquake-
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Fig. 3. Slip and slip-rate in terms of time for two different scenarios. Blue
curve: Natural earthquake. Red Dashed Curve: Induced earthquake.

resulting in a slow-aseismic response, despite the presence
of ¢, and parametric uncertainties. Furthermore, this control
design will be tested in Section [V on simulations and on the
experimental setup depicted in Fig. 2.

The designed controllers will reduce the natural response
time of the system slowing its energy dissipation and elimi-
nating bursts of kinetic energy (earthquake phenomenon). This
is an uncommon paradigm in control theory where usually the
objective is to drive the states of the system to the origin as
fast as possible

I1l. CONTROL DESIGN

Two control approaches are presented in this section: the
first one is based on continuous sliding-mode control theory
[25], [26] whereas the second one is based on LQR control

like instabilities: (a)Schematic figure, (b)Real configuration

[27]. Both these controllers must be able to force the states of
system (4) to track a predefined reference, using a continuous
control signal, in spite of uncertainties/perturbations of the
system (4).

It is worth emphasizing that due to the nature of the physical
process of the earthquake phenomenon, the controllers have to
be robust to uncertainties regarding the material properties and
plant dynamics, as well as to disturbances of the input signals
and measurements. This motivates the choice of sliding-modes
control, which will be compared with a robust LQR control in
order to slow down the system and make it follow a desired
reference trajectory.

The desired reference for the output y = z; is a smooth
function reading as

7(t) = dimazs®(10 — 155 + 65?), (6)

where s = t/top, dmas the target displacement and ¢,, the
operational time of the tracking strategy. The constant dy,qq
is the distance the fault slides dynamically in order to reach
its sequent stable equilibrium point. Notice that the parameter
top 18 free to be decided depending on the earthquake control
scenario that one wants to apply. Nevertheless, ¢,, has to be
sufficiently high with respect to the characteristic time of the
earthquake phenomenon, but low enough to achieve aseismic
slip with higher velocity than the far-field velocity (v in (1)),
for the control scenario to make sense.

The choice of the reference output y = x; is motivated
by the need to control the average slip over the fault. This
average slip is directly connected with the magnitude of an
earthquake through the seismic moment [35]. Therefore, by
controlling the rate of the average slip, the system is forced to
release its energy in a quasi-static way, i.e., aseismically. See
[9], [42] for more details.

A. Sliding Mode based Control

To perform the tracking of the desired references r(t), 7 (t),
a sliding-mode-based control is designed. Defining the track-
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ing error variables,
e1 =1 —1r, ey==Ty—T, @)
the error dynamics reads as
€1 = eg,
é2 = —[u(er + 1,2 +7) — W' INGl, + pler +1)Np
— l%(el + 1) —1i(ea +7) + Pe(er + r,ea + 7,t) — 7.
(@)

If the exact knowledge of the system parameters and the
system dynamics would be available, all the known dynamics
in é2 can be compensated, in order to get the nominal error
system,

€1 =¢e3, €2=1U, C)
by designing the control p as
1 .
= —{v+lules +7) —wINo,

pler +r,e2 +7)N

+ ler +7) +iile2 +7) — feler + 7 e2 +7.) +7 .
(10)

and with the new control input, v, designed to force ej,es
towards zero. A solution could be the linear feedback control
v = —kie; — koeo with any k1, ko > 0. However, system (9)
is valid only in the nominal case. If this is not the scenario, the
application of the state-feedback (10) with uncertain parame-
ters will not lead to (9). In this case, consider the feedback
control 1
p= — U, (1
toNo

where the sub index ‘O’ indicates the nominal value of the
real considered parameter. Notice that some additional nominal
parameters could be used in (11), as 1%0, Mo or even the known
term 7(t). However, the objective here is to design a controller
requiring a limited amount of information.

Therefore, the closed-loop system obtained from (8) and
(11) reads as

€g = ﬂ(ta 6) [V + h(tv 6)] ) (12)

él = €2,
where e = [e1,es]T, B(t,e), is the uncertain control coef-
ficient, and h(t,e) is a matched perturbation affecting the
system. These terms read as

uler +r,ea +7)N
ko No

1 o

h(t,e) = m{ — [u(er + 7, e2 +7) — p*|Noy,

/B(tv 6) =

I

— kley +1) =iz +7) + Peler +1,ea +7,1) = i }.
13)

Both these terms are assumed to fulfil in the operating
domain

dh(t -
O<bm§6(tue)§b]\{[7 ’% SLu (14’)

with known constants b,,,, by, L.

Remark 2: The condition for 3(t, e) in (14) is satisfied
because of the assumption of u(e; + r,es +7) = p(z1, x2)
in (2). The condition for h(t,e) in (14) is satisfied (locally
inside of a domain) because of the definition of r(¢) in (6)
and if the external perturbation term @.(e; + r,ea + 7,t) is
Lipschitz w.r.t. time. As a result, the tracking result obtained
in the sequel is valid locally.

The design of the control input v able to stabilize (12) at
e1 = e = 0, despite the presence of 3(¢, e), h(t, e), results in
an aseismic motion of system (4). For this purpose, consider
the Second-Order Continuous Twisting Algorithm (2-CTA)
introduced in [25]

V=— )\%kl (elj% - /\%kg |—82J% +€1,
€1 == Mg [e1]® = My [ea]”,

and the Second-Order Discontinuous Integral Algorithm (2-
DIA) introduced in [26]

5)

1
V= — Nk ﬁezj% +/\%k1%161J ‘i,
. 3 (16)

1 310
&1 =— Mkr3 [614—)\ 2k (€2J2J .

Both of these algorithms consist of a static homogeneous
finite-time controller and a discontinuous integral action,
aimed at estimating and compensating the uncertainties and
perturbations. Notice that the presence of the discontinuous
function, [-| % in the integral action finally results in a contin-
uous control signal.

Theorem 1: The origin of the system (12) is LFTS, de-
spite the presence of the Lipschitz w.r.t. the time uncertain-
ties/perturbations h(t,e) and bounded uncertain coefficient
B(t,e) satisfying (14), if the control v takes the form of (15)
or (16), with gains appropriately chosen.

As a consequence of Theorem [, the state variables 5,6
of system (1), are locally driven in finite-time to the desired
references r(t), 7 (t) defined in (6).

Proof: The closed-loop system (12), with controller (15)
reads as

€1 = e,
é2=Blt,e) (~A3kafer)® = A ka[ea) T Hes),  (17)
é3 = — ks [e1]” — My [ea)® + h(t,e),

with es = & + h(t, e). If the controller (16) is used, one gets

€1 = ea,

5 1

éa = B(t,e) <—/\%k12 “@J% + /\%klilelJ "+ €3> v (18)

L 310 .

é3 = —Akr3 ’761 + A 2kpy ’—€2J§J + h(t,e) .

The solutions of both systems are understood in the Fil-
ippov’s sense (see [28]). It will be shown that given bound
parameters b,,, by; and a fixed L, it is possible to find the
values of both control gains such that e = 0 is LFTS, but for
a not assignable value L* of the Lipschitz bound L. To meet
this value, one just has to scale the previously obtained gains
using A such that AL* > L.
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The scaling with A > 0 does not alter the stability of
the system. This can be shown by first performing the linear
change of variables z = e in systems (17) and (18). The
system in the variables z has exactly the same form as (17)
and (18), respectively, but with the gains scaled as in (15), i.e.,

(k1 ka, ks, k) — (kl/\%, koA®, ks, k4/\) and as in (16),

e (ki ko, krs, kra) = (knAs, kraA?, kish, kad™=
(see [25], [45] for more details on each scaling). Therefore,
both systems are equivalent in terms of stability.

The details of the proof for the closed-loop dynamics of
system (18) with the controller (16), which follows closely the
idea in [45], [46], is presented. The proof for the controller
(15) is similar, and a brief comment below is provided.
First, the gain A = 1 is fixed. Then, a homogeneous and
continuously differentiable Lyapunov function candidate is
considered as

3 5 2 -3 5 1 5
V(p) = M |p1]® + P12 + gkn |p2|? + 5 |3]”
where
_1
dr=e1—[03)°, dr=es, d3=k 2kpes.

V (¢) is positive definite if k;; > 0 and 77 > 0 is selected
sufficiently large. Its derivative along the trajectories of the
system (18) is

. 1 73
V =~k kBt e) <¢1 +kpy® T2 %)

x U(m wp Foal? )+ fol? | - %}
+ (71 (¢1J% + ¢2) ¢ — klsk;lé kry [ [os)*

— 3¢s|? (’Yl Wﬂg +¢2) ]{ [Qﬁl + [¢3)% + kg WQJ%JO

Using the bounds for 5(¢, e) and h(t, e) in (14), the derivative

reads as
V < —EZ[Qbm <¢1 + k;lg W?ﬂ )
_3 3 %
x H(m + ko2 (2] ) + [¢3] J —¢3}

+ (71 (¢1J% + ¢2) b2 — ki3 [ [os)*

Nlw

Nlw

— 3¢s|? (’Yl Wﬂg +¢2) ]{ [Qﬁl + [¢3)% + kg WQJ%JO

,i*]},

where I* = L kpo = ki kps and ks = krsky2 kil

Note that the value of L* is not given, but it has to be
found. Using Lemma 2, the first term can be proven to be
negative semi-definite and it vanishes only on the set S; =

{kiro1+ [62)F =

_ [_5*

Evaluating V on this set results in

V], <= (nkn' = 1) loaf?

— ks losf [3 (vikp' = 1) 62 + [6s)]

x {K—kn% + m) 62) % + wsJ?’JO - [-1, E*]} .

If 41 > k1, the first term is negative semidefinite, and it is

zero only on the set Sy = {¢2 = 0}. Evaluating V| on S,
s
reads as '
< —k {ros)° = [-1*, 1] } .
ang, S Hra o] {T0a)"
This is negative if L* = kL—;; < 1. By Lemma 1, V| <0
S1

is proven by selecting ks > 0 small. Using Lemma 1, again,
it is possible to make V < 0 selecting kro > 0 sufficiently
large.

For the closed-loop system (17), the smooth and homoge-
neous Lyapunov function

5 5
Vie) = aj |e1|® + azeres + as |ea]|? 4+ aqer ’—63J2

- 0456263 + o |€3|5 )

can be selected. It has been shown in [25] that the origin
of system (17) is GFTS for appropriate selected gains k1 >
0, k2 > 0, ks > 0, k4. Although this result has been obtained
in [25] using an SOS algorithm and assuming that the control
coefficient is known and constant, the proof can be also
extended to the actual case using similar arguments as those
used above for the controller (16).

Therefore, the origin of systems (17) and (18) is asymp-
totically stable, but locally, as a consequence of Remark 2.
Moreover, since the systems are homogeneous of negative
degree, such origins are LFTS (see [47]).

|

B. LQR-based Control

Following the sliding-mode based control design, this sub-
section presents an extended Linear Quadratic Regulator (e-
LQR). The term extended is due to the integral action added to
a standard LQR algorithm, in such a way that Lipschitz w.r.t.
the states uncertainties are compensated with the resultant
control.

Starting from (4), the plant is extended with a double
integrator to improve the tracking of the reference trajectory.
The stability of this augmented plant controlled by a LQR
controller is being proved by a Lyapunov’s approach. For this
purpose, define

Gi=x1—1, & =E. (19)
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The matrix form of system (4) is

E}J/: [—Ok —177] E/;J/Jr L(xhoxz)ﬁ} P

i A(t) @ B(t,) 20)
+f ! ]
(@1, 22) — W |Noy + e(w1,22,1) ]
g(t,x)
whereas the matrix form of ({3, £2)-system is
) o o] fa] [ [1 0] [=] , [-r(®)
[52—10&+00x2+0.(21)
~—— ——— ——

~— ==

‘ Ce & Co @ re(®)

Following a conventional integral control design (see [21,
Chapter 12] for example) and supposing a constant reference
r(t) = ro, the augmented system composed by (20)-(21) reads
as

-1 s [l ) e

Tq Ag(t) Ta B, (t,zq) ga(t,xa)

Consider additive (matched) uncertainties to A,(¢) and
B,(t,z,) such that,

Aq(t) = Ag + AA(Y), (23)
Ba(t,z4) = Bo + AB(t, 24), (24)
where
0 1 0 O 0
~ko —i0 0 0 Alp(z1, z2)N]
Ado=11" g g o ABlw)= 0
0 0 1 0 0
0 A 0 0 O 0
Ak —AR 0 0 resN
0 0 0 O 0

The sub-index ‘0’ represents the nominal value, whereas the
quantity with the prefix ‘A’ corresponds to the uncertainties
of the respective variable. In addition, the assumption (2) was
used for the friction coefficient p(x1,z2), so the variation
AB(t,x,) is always positive semi-definite.

From (22), (23), and (24), one gets

fq = Aot + AB(t,x,)p+ Bo [p+ h(t, z,)] (25)

where h(t,z,) = By AA(t)z, + Bd g(t,7,), with By is the
Moore-Penrose inverse matrix of By, i.e.,

+ 1
By =[0 =5 0 0. (26)
Then, the nonlinear vector h(t, x,) can be written as
Wt 2a) = By [AA(t)za + g(t, 7))
1 .
= — = Af]xg + AkIl
,UTesN (27)

+ [u(z1, w2) — p] U;]N — @e(ﬂfl,ﬂ?z,t)}-

Assuming the external perturbation ¢, (x1,x2,t) to be Lip-
schitz w.r.t. the states, i.e., |Pe(T1,72,1)| < |P1eT1 + P2eT2]
for some known positive constants Qie, P2e, the norm of
h(t,z,) reads as

At za)|l =

1
MresN

x [k MO Gl N oy, Ajj+gae 0 0]

1
,Uf'resN

X [Al;max + H;nlaxo';,ANmax + @16 Aﬁmax + @26 0 0] Za

)

where the bound pi** = %ﬂ;l’”) '
the maximum absolute softening slope of ‘the friction. The
subscript ‘max’ denotes the maximum variation in absolute
term from the respective nominal values.

Finally, one gets the bounds of the variation coefficient

AB(t,z,) and perturbation h(t,z,) in system (25) as,

corresponds to

0 < AB(t,z,), ([h(t, za) || < [|Gzall (28)
with G defined as,
. 1
1(21) N i
X [Akmax + HgllaXU;lANmax + 9518 Aﬁmax + 8526 0 0:| .
29

Inspired from the original LQR control proposed in [27],
define the e-LQR control input p designed for the augmented
system (25) as

p=—R'BiOxa=—[k1 ky ks kallzs 1z & &I,

(30)
where R is a positive definite matrix to be chosen and
© the positive-definite solution of the following Continuous

Algebraic Riccati Equation (CARE),

Al©+ 04, - OByR'Bje = —Q, (31)

with

Q= Qo+ ||RV?|FG"G, (32)

and Qo a positive definite matrix to be chosen.

The next Theorem states the main result of the e-LQR
control.

Theorem 2: The origin of the augmented closed-loop sys-
tem (25) is GES, with the presence of the Lipschitz w.r.t.
the states perturbation h(t,z,) and positive semi-definite term
AB(t, z,) satisfying (28) and (29), when the control input p
takes the form of (30)-(32).

As a consequence of Theorem 2, the slip ¢ and slip-rate
fault § of the original system (1) are driven globally and
exponentially to a desired constant reference r(t) = ro.

Proof: Select as Lyapunov candidate the positive definite
and radially unbounded function V(z,) = z.©x,, where



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (JANUARY 2022) 9

©=0T>0404asa positive definite matrix. The following
inequalities are true for the Lyapunov candidate

Amin(0)]|2a]|? € V(2a) € Anax(©)||zal >, (33)
OV (z,)
— <
H 8:17a ‘ = 2)\max(®)||$a||7 (34)

where Apin(©) and A\pax(©) are the minimum and maximum
eigenvalues of the matrix O, respectively.

The time derivative of the Lyapunov candidate V (x,) along
the trajectories of closed loop system (25) and (30) reads as,

V =2,"0z, + 2l 01,

=z, (A)© +©A; — OByR 'Bj0) 2, (35a)
BoR™'ABT + (ByR~'ABT)"

— 2,792 i 2( 0 ) Oz, (35b)

— 2YO@ByR™' B} Oz, + 22 © Byh, (35¢)

where the dependencies of h(t,z,), AB(t,z,) have been
omitted for simpler notation.

The term (35a) is the CARE as defined in (31). Moreover,
due to the fact that the nominal matrix By has been selected
to have the term AB(t, z,) non-negative, the non-Hermitian
matrix BoR 'AB" is always positive semi-definite and the
term on (35b) is a non-positive scalar.

Therefore, letting z = RY 2BOT Oz,, one gets

V < —2lQuq — 272 4 22TRV?h, (36)

with R™! = R™Y/2R~1/2,
Using the definition of () in (32) and the Lipschitz condition
for h in (28), it comes

. 2
V < — 12, Qota — HRl/QH I G Gy — 272 + 22T RY?h,
2
< — o Qora — B2 NGl — |12)?

) ‘R1/2

|21 Gl
2
< — a1 Qowa — (|| RV2] IGall = 121)

< - LL‘EQQI’@ < _/\min(QO)||‘ra||2 <0.
(37

As a conclusion, V(x,) is a Lyapunov function for system
(25). Therefore, its origin is GES. [ |

C. Control Strategies Comparison

The designed control strategies, p, shown in (11), (15), (16)
and (30)-(32) represent the fluid injected to the fault able to
achieve aseismic response in the model (1) by tracking a slow
reference, robustly and by using a continuous control signal.
This is performed despite the presence of uncertainties and/or
disturbances assumed to be as (12),(14) for the sliding mode
algorithms, and to be as (25),(28),(29) for the e-LQR. For the
earthquake application, this basically means that the friction
coefficient must be Lipschitz w.r.t. the time and the states of
the dynamical system. Such assumption is fulfilled by the most
common friction laws used in fault mechanics (see [42] for a
mathematical proof).

Now, some properties of each control strategy are discussed

in the following, highlighting the differences between them.

Sliding mode-based control:

o The origin of system (12), with bounded control coef-
ficient 5(t,e) and Lipschitz w.r.t. the time perturbation
h(t,e) assumed as (14), is LFTS.

o Calculation of the gains for the 2-CTA (15) and 2-DIA
(16) controllers, can be obtained using a Sum Of Square
algorithm for the 2-CTA (see [25]) and by performing a
maximization of homogeneous functions for the 2-DIA
(see [45], [46]).

o The reference signal r(¢) that can be tracked, has to
be chosen as ]r(3) (t)] < ~ with a positive constant
v, in order to fulfil the assumptions in (14). Note that
the selected reference (6) fulfils this condition for all
t €0, top]

e Systems (17) and (18) are homogeneous vector-set of
degree d = —1 and weights (r1,72,73) = (3,2,1). Due
to homogeneity properties [47], the theoretical precision
of the states after the transient are |e;| < A;T3, |es] <
AoT? and |e3| < AsTs, where A; > 0 with i =
{1,...,3} and Ty the sampling time.

LQR-based control:

o The origin of system (25), with positive semi-definite
variation coefficient AB(t,x,) and Lipschitz w.r.t. the
states h(t, x,) assumed as (28), is GES.

o Calculation of the gains for the e-LQR control (30) are
obtained by solving the CARE (31)-(32).

o The classical version of an integral control will track a
constant reference, i.e., r(t) = ro (see [21, Chapter 12],
for example). According to the internal model principle
(see [48]), the use of a double integrator (19) will be able
to follow linear time references, i.e., r(t) = a1t+ao, with
some a1, a2 € R. The steady-state error tracking of the
target reference (6) using the presented control will not
be zero, but it will be improved by using this double
integrator scheme. In addition, this error can become
smaller increasing the e-LQR integral gains.

IV. NUMERICAL SIMULATIONS AND EXPERIMENTAL
CONFIRMATION

In order to illustrate the performance of both previous
control algorithms, simulations and laboratory experiments
have been performed based on the shifted system described
by (4). The definition of the next parameters to be used are
recalled
k n

N A ~
N:_u k:_a ﬁ:_a A:Licu

m m m

G ~ ® (x17x27t)
k= Lac7 m = pchu <Pe($17$27t) = eTu

where @, (1, 22,t) is an external perturbation and p(z1,x2)
the friction coefficient. In the following numerical examples,
a friction coefficient of the form

(1(21) = fires — Ap- e (38)

is considered with Ay < 0. Such function is defined as a slip-
weakening friction law [35] and it evolves from an initial value
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Mmaz = Hres — Ap (static friction coefficient), to a residual
one s (kinetic friction coefficient) in a characteristic slip
d., as shown by Fig. 4.

plz1)

Prmax

TAp|

T

Fig. 4. Slip-weakening friction law used in the simulations.

The choice of a friction law that depends only on the slip
is argued by the difficulty of modelling the complex structure
region of frictional interfaces. Nevertheless, the friction coef-
ficient (38) fulfils the assumption imposed in (2) and it was
used for calculating the controller gains.

Two cases have been studied in this paper. For the numerical
simulations, the parameters of the reduced model for earth-
quakes (see eq. (4)) are chosen to correspond to an earthquake
of magnitude M,, = 5.8, where simulations are being made
using MATLAB Simulink. For the experiments, a different set
of parameters was chosen corresponding to the laboratory-fault
setup (Fig. 2), corresponding to an earthquake of magnitude
M,, = —5.2. The mechanical and frictional parameters for
these two cases are given in Table I.

Remark 3: Based on the Buckingham 7 theorem [49], the
lab-fault dynamics can be upscaled to obtain the real-fault
dynamics under appropriate scaling laws (see [41, Appendix
E] for further details).

Note how the seismic magnitude of the lab-fault allows to
reproduce safely in the laboratory earthquake-like instabilities,
but such experimental results can be upscaled to real earth-
quake events.

Remark 4: The controller gains used for the numerical
simulations were obtained by upscaling the gains chosen for
the experimental tests. This was made in order to be consistent
with the upscale process commented above. See Appendix [
for more details.

A. Numerical Simulations

The numerical simulations on the shifted system (4) using
the real-fault parameters from Table I, have been performed
in MATLAB Simulink with Dormand-Prince’s integration
method of a fixed time step equal to 7% = 184 [ms].

The controller (11) with py = ufes,]\% = AY/m*, v
chosen as (15) for the 2-CTA and as (16) for the 2-DIA,
and the e-LQR control (30) have been implemented. The
controllers gains have been selected as

o 2-CTA: ky = 781.37, ko = 3.22x 103, k3 = 4.51x 1074,

ky =2.15 x 10~* and A = 500.

!'Superscript L means lab-fault parameters from Table I.

o 2-DIA: kj1 = 521 x 1072, ko = 3.23 x 103, ky3 =
3.91 x 1074, k74 = 0 and X\ = 500.

o e-LQR: k1 = 1.88x10%, kg = 5.79x 108, k3 = 1.02x 105
and k4 = 18.52.

The reference signal (6) is used with d,q, = 785 [mm)]
and t,, = 184.17 [h]. Furthermore, an external perturbation
Pe(m1,m2,1) = 3.2 x 107 %5in(0.69¢) + 3.2 x 10~ %21 [m/s?]
has been added to the system, and the initial condition z; (0) =
x2(0) = 0 was chosen for the three algorithms. It is important
to notice that the external perturbation has a Lipschitz w.r.t. the
time term and a Lipschitz w.r.t. the states term. Furthermore,
the chosen frequency in the sinusoidal perturbation is equal to
the natural frequency of the system, i.e., w, = \/k/_m ~ 0.69
[rad/s]. The magnitude of both terms in such perturbation has
been selected to appreciate a change in the system response
and to check the robustness of the controllers versus different
kinds of functions and resonance behaviour.

The numerical results are presented in Figs. 5-7. In the
three simulations, the slip z; is follows the desired reference
in order to dissipate slowly all the stored energy avoiding
earthquake-like events. This can be seen by comparing Figs.
5 and 6, where the lack of a control input in the earthquake
phenomenon results in the state x; evolving much faster
than the controlled scenarios. Sliding-mode controllers present
better results in the displacement tracking, but in terms of
velocity, the e-LQR controller shows a more stable response
without oscillations. Nevertheless, the three algorithms fulfil
the tracking task despite the presence of the external per-
turbation and the use of nominal system parameters for the
control design (robustness). In particular, the control signal
generated by the e-LQR controller shows a smooth behaviour
without demanding excess actuator response. On the other
hand, the sliding-mode controllers (2-CTA and 2-DIA) show
an oscillatory behaviour but not reaching high oscillations as
the chattering effect (see zoom made in Fig. 7). This is because
such sliding-mode algorithms make use of the discontinuous
sign function, which provokes oscillations of high (in theory
infinite) frequency. Nevertheless, the final control signal that
the plant experience is continuous, thanks to the type of
controllers employed. The above comment could explain the
presence the presence of more oscillations compared to the
linear control, mainly in the velocity and in the control input.

08 0.08
—a; [m]
- -3 [m/s]
06F 0.06
= )
g L
Eoaf 0.04 8
8 g
0.2f 0.02
0 0
0 50

t[s|
Fig. 5. Earthquake phenomenon in the real-fault simulation.
To make a further comparison between the three controllers,

the mean integrated error (MISE), the average power (RMS),
and the maximum errors have been calculated on the steady
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TABLE |
MECHANICAL AND FRICTIONAL PROPERTIES ADOPTED FOR THE REAL-SCALE SIMULATIONS (R) AND THE LABORATORY EXPERIMENTS (L)

Parameter Description Simulations Experiments' Scaling factor?
Real-fault (R) Lab-fault (L) (R/L)
p density 2500 [kg/m3] 1385 [kg/m3] Ap =181
G shear modulus 30 [GPa] 225.5 [kPa] Ag = 1.33 x 10°
n damping coefficient 5 x 101 [kg/s] 408 [kg/s] Ap = 1.23 x 1012
Lgc activated fault length 5 [km] 0.1 [m] AL,. =5 X 10
ol effective normal stress 50 [MPa] 0.1 [MPa] Ap = 500
Ures residual friction 0.2353 0.4 Ap = 0.5882
Ap friction drop -0.1 -0.17 Au
dc characteristic slip distance 276.35 [mm)] 2.5 [mm] As = 110.54
dmazx maximum displacement 785 [mm] 7.1 [mm] As
top operation time 184.17 [h] 1 [h] Ar = 184.17
Ts sampling time 184 [ms] 1 [ms] At
My seismic moment 6.25 x 1017 [Nm] 17 [Nm] An, = 3.68 x 1016
My, seismic magnitude 5.8 -5.2 A, = 4.97

! These values correspond to a double interface of an area of A = 100 [cm?] and a spring coefficient of k =
45.1 [N/mm] used for the experimental apparatus depicted in Fig. 2.
2Due to the fact that seismic mazgnitude is based on a logarithm scale (see eq. (3)), the scaling factor between

both faults is equal to A\ps, = 3 logqg Ang, — 6.07.

[m]

1

50 100 150

o [m/s]

_4 Il Il Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160 180

t ]

Fig. 6

160.05

p [MPa]

Fig. 7. Control signal in the real-fault simulations.

state (a time t = t45). All of these were normalized w.r.t. the
e-LQR results. This can be seen in Fig. 8. The position results
are smaller for the 2-DIA and the 2-CTA, but the e-LQR

velocity errors are smaller. This is consistent to the results
shown in latter Figs. In addition, one can observe that the
maximum position error for the e-LQR control is of the order
of ~ 1 [mm], which can be considered negligible in a total
slip of ~ 800 [mm]. On the other hand, the maximum velocity
error obtained with the 2-CTA controller was of 3.5 x 1073
[m/s], which twenty times smaller than the maximum slip-rate
of the original earthquake event (see Fig. 5). Furthermore, the
three algorithms present the same RMS value, so they spent
the same amount of energy (in average) to solve the tracking
problem.

B. Experimental Confirmation

In real applications, measurements of slip and slip-rate in
system (1) can be obtained through microseismicity mea-
surements and other geophysical methods (e.g., GPS, LIDAR
and topographical measurements). For our case, the lab-fault
system depicted in Fig. 2 measures the slip, x;, using two
LVDTs. In order to obtain the slip rate velocity z2 required by
the designed controllers, a robust exact filtering differentiator
[50] has been implemented and reads as

—5)\3 (wljg + wa,
~10.037; [w|® + &1 — 21,
Br = —9.303 [wy)? + &,

Gy = —45TAF [wy |? + d3,
ig=—11Ag [wi]’,

&
I

<.
N
Il

(39)

with \; = 1 x 107°. Therefore, all the designed control
algorithms, p, have been implemented as functions of the
estimated slip and slip rate, i.e., p(&1, £2) instead of p(z1, x2).
This would reduce the possible noise from the estimations due
to the LVDTs measurements.

Remark 5: Differentiator (39) provides the second deriva-
tive of the input z (¢) while filtering the signal with a second

order filter, if ’zgg)(t)‘ < Lg and \y > L4 (see proof
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Fig. 8. Errors and average power comparison in the simulations.

in [50]). Furthermore, the authors of the present paper are
fully aware of the separation principle problem with nonlinear
systems. However, the purpose of the following results consists
of experimentally showing the convergence of the complete
closed loop-system (Plant, control and differentiator).

The designed controllers have been tested in the laboratory
apparatus shown in Fig. 2. The experimental process is as
follows. First, the spring is compressed by a press, taking the
system close to its unstable equilibrium point. Without control,
the stored elastic energy of the spring is released abruptly,
causing an earthquake-like response (fast seismic slip), as
shown in Fig. 9.

zo

20000 1

T

15000 A

10000

o [mm/min

5000

01
0

40 80
Milliseconds

Fig. 9. Earthquake phenomenon in the lab-fault experiment.

Then, the controller (11) with pg = pl. Ny = AL /mE v
chosen as (15) for the 2-CTA and (16) for the 2-DIA, and the
e-LQR control defined by (30) have been implementedz. The
lab-fault system parameters shown in Table [ are considered
as nominal values of the plant for calculating the controller
gains as

o 2-CTA: k1 = 7.5, ko = 5, k3 = 1.66 x 1074, ky =

7.92 x 1075 and A = 500.

2Superscript L means lab-fault parameters from Table I.

o 2-DIA: kj1 = 2, ko = 5, k3 = 1.44 x 10_4, ks =0
and A = 500.

o e-LQR: k1 = 4.17x108, ky = 6.94x10°, k3 = 4.17x107
and k4 = 1.39 x 105.

The reference signal to be tracked is chosen as (6), with
dmae = 7.5 [mm] and t,, = 1 [h]. In other words, the
controllers not only must avoid the unstable behaviour but
to follow an aseismic slip equal to 7.5 [mm] in one hour,
evolving according to the sigmoid function (6). The results
are displayed in Figs. 10-11. The three controllers are able to
fulfil the task of controlling an earthquake-like instability by
increasing the response time of the system (from around 80
[ms] to 1 [h]). The three controllers achieve the steady state
around 9 [min] and they keep the states around the reference
signal. The e-LQR presents a large overshoot in the control
signal at the beginning of the experiment (see Fig. 11) and the
2-DIA presents higher peaks on the velocity. Fig. 11 shows
the three continuous control signals used for the tracking and
how the measured friction coefficient evolves in time. Note
how this latter is always bounded and always higher than the
minimum value used for designing the controller (f,.s = 0.4).
It also shows high frequency oscillations compared with the
nominal friction of Fig. (4), used in the numerical simulations.
This behaviour is due to the grain size of the interfaces and
other unmodelled dynamics, that the controllers successfully
compensate.

Assuring a fair comparison between the three presented
controllers is not straightforward, due to the presence of
different uncertainties and disturbances in each experiment.
In particular, the tested samples are not the same between
different tests, the experiments do not initiate exactly in the
same initial point, and better gains may exist to optimally
tune the three different controllers. Furthermore, as discussed
before, both control strategies present different theoretical
properties. Nevertheless, the error comparison used in the
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confirmation.

simulations has been made again for the experimental results.
This is presented in Fig. 12. The lowest errors were obtained
with the 2-CTA using the smallest average power, but the three
algorithms present negligible absolute errors. A video of the
experiment is available in [51].

V. CONCLUSIONS

In this paper, a challenging, emerging application of robust
nonlinear control theory is presented for preventing natural
and anthropogenic seismicity. The control is designed to
perform tracking of a slow reference based on a reduced-
order model for earthquakes. Two types of controllers are
presented: the first one is based on sliding-mode theory and the

other on LQR control. The first one results in local finite-time
convergence of the tracking error, while the second presents
global exponential stability. Both controllers are designed to
generate a continuous control signal and use integral action to
compensate different kinds of perturbations. The algorithms
have been tested and compared in numerical simulations over
a real-fault system and in a specially designed experimental
apparatus, showing that both types of controllers succeed
in achieving tracking to a new stable equilibrium of lower
energy. In the simulations, the best precision for the slip error
was obtained with the sliding-mode algorithms, but the LQR
control was better achieving a smaller error in the slip-rate
error. With respect to the experimental tests, both controllers
were successful in compensating unmodelled dynamics and
parameter uncertainties present in the real systems, but the
2-CTA sliding-mode algorithm achieved the best results. As
far as it concerns, the performance of the controllers could
be upscaled to a real earthquake due to the existence of
scaling laws between both faults. The design of controllers
based on more detailed and complete models representing the
earthquake phenomenon (e.g., coupled elastic and diffusion
partial differential equations) remains as future work.
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APPENDIX |
GAIN SCALING

To show how the experimental results can be upscaled
to a more realistic earthquake event, the lab-fault system
parameters were scaled to obtained the real-fault parameters,
according to Table . Furthermore, the controller gains used in
the experiments (IV-B) were manipulated in the same sense to
obtain the set of gains (IV-A) for the numerical simulations.

Recalling (11), (15), (16) and (30), the controllers to be
used in the lab-fault experiments are defined as

1 1 1
2CTA: ph = [Abk [ef|* —abks [e)F v et]
1o No
. . .
€F = — Ny [eF|” — Nea [ek ],
1 3 1,3 % 1
2DiA pb == b [[ef)F bkt ] et | -
1o No
0

. 3
§1L =—Akrs [ef A Tk [eF | 2J :

e-LQR: pl = —kﬂf - kzﬂﬁ% - k3§1L - k4§2Lv

using the superscript L as notation.

According to Table I, the upscaled pressure, slip and slip-
rate, error variables and integral terms can be obtained as pR =
pE,, eft = ebhs, aft = 2b)s, el = el N, o8t = 2l ),
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ER = el as Ay, €8 = €ENsA2, N, = Xs/x,. Therefore, the latter

controllers for the real-fault simulations read as
_ 1 _ 1 1
[—)\%kl [R5 — M\3F, [eF]? +§ﬂ

. R
2-CTA: p TRE

EF = — Mg [ef)” — Nk [eB ],

L Lo ko A A A A
where (klu k?u k37 k4) = (kl)\l_%, k2)\1_52’ k3>\—f7 ]{4>\—:)’
) v

1 3 1.3 3 1
2DIA: pFR = — Azkm“eﬂ2+A2kﬁe{*J +eff | —,
Ho No
1 3 0
& = — k3 {6{%+>\2k14 [SQRJEJ )
where
- Ao A A As
ki, kro, krs, kia) = | k=, ko =2 ks =2, kg —>
( 11, 12, I3, 14) 11 Az/.ga 12)\’2/27 13 Atv 14)\2/2
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and using the superscript R as notation.
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