ISP pipeline、3A(AE、AF、AWB)、Pdaf原理及验证方法、曝光原理。-my write

  1. ISP pipeline

DBS:校准经过OBC之前不同像素暗电流的差值。
因为器件原因,会存在暗电流,存在暗电流的情况下会导致偏色。
在这里插入图片描述

OBC:sensor电路本身存在暗电流,没有光线的时候,像素会有输出,OBC减去暗电流,找到0基准。
Lens Shadding:镜头阴影校正
镜头是一个凸透镜,在接收光线时,成像较远时,会造成斜光束慢慢减少,图片中心较亮,四周比较暗。
在这里插入图片描述

PGN:3A统计计算模块(计算awb、af、ae)
UDM:利用颜色插值,光分为r,g,b三原色,g是亮度,通过g的插值,得到一下图片。
在这里插入图片描述

CCM:颜色校正
由于各个颜色块之间的相互渗透带来颜色差,将拍摄到图片与原相片对比,得到一个像素矩阵。在以后的图像传感器中,都利用这个像素矩阵来使原图片与拍摄到的图片尽量一致。
在这里插入图片描述

GMA:人眼对亮度的感知时非线性的,gamma校正是为了模拟人眼对亮度的感知。
ANR:YUV(图片格式)域降噪模块。
EE:YUV域蜕化模块(锐化增强图片边缘细节)
ANR2:YUV降噪的2次处理。
HFG:高频率产生器,增加图像颗粒感,增强细节。
COLOR:调整布局色彩。

图像噪声直观表现为图片不清晰,噪声在图像上常表现为一引起较强视觉效果的孤立像素点或像素块
在这里插入图片描述

  1. 3A之AWB

AE:自动曝光 通过调节快门、光圈、感光度来使图像达到合适亮度。
AF:自动对焦 通过控制对焦马达的位移,使镜头焦点在合适位置。
AWB:自动白平衡 在不同色温下,白色图片会呈现出不同的颜色,白平衡就是为了使白色尽可能的还原成白色。

sensor原始图像中的白色如果不经AWB处理,在高色温(如阴天)下偏蓝,低色温下偏黄,如宾馆里的床头灯(WHY!OTZ) (如下图).
在这里插入图片描述

流程原理:
1

### ISP Pipeline 的基本原理与工作流程 ISP(Image Signal Processor,图像信号处理器)Pipeline 是相机系统中负责将图像传感器采集的原始数据转换为高质量图像的核心处理模块。其工作原理基于多个算法模块的协同作用,每个阶段都对图像质量产生重要影响[^1]。 #### 构成阶段 ISP Pipeline 通常由多个处理阶段组成,这些阶段可以根据功能划分为以下几个主要模块: - **黑电平校正(Black Level Correction)**:用于消除图像传感器在无光照条件下产生的偏移值。 - **镜头阴影校正(Lens Shading Correction)**:补偿由于镜头光学特性导致的图像边缘亮度下降问题。 - **去马赛克(Demosaicing)**:将图像传感器输出的 Bayer 格式原始数据转换为完整的 RGB 图像。 - **白平衡(White Balance)**:调整图像颜色,使白色物体在不同光源下仍显示为白色。 - **色彩校正(Color Correction)**:通过矩阵运算修正图像的颜色偏差,增强色彩表现力。 - **伽马校正(Gamma Correction)**:调整图像对比度,使其更符合人眼视觉感知特性。 - **锐化(Sharpening)**:增强图像细节,提高清晰度。 - **降噪(Noise Reduction)**:减少图像中的随机噪声,提升图像信噪比。 - **自动曝光(Auto Exposure, AE)**:根据场景亮度动态调整曝光参数,确保图像亮度适中。 - **自动对焦(Auto Focus, AF)**:控制镜头聚焦位置,保证图像清晰。 - **自动白平衡(Auto White Balance, AWB)**:自动识别环境光源类型并调整色彩平衡。 #### 图像处理流程 整个 ISP Pipeline 的图像处理流程是线性的,即每一阶段的输出作为下一阶段的输入。这种结构使得图像逐步从原始传感器数据转化为高质量的可视图像。具体流程如下: 1. 图像传感器捕获光信号并将其转换为电信号; 2. 原始数据进入 ISP Pipeline,依次经过各个算法模块处理; 3. 每个模块执行特定的图像增强任务; 4. 最终输出 RGB 或 YUV 格式的图像数据,供后续应用使用。 例如,在去马赛克阶段之后,图像已经具备完整的颜色信息;经过白平衡和色彩校正后,图像的颜色更加准确;再通过伽马校正和锐化,图像的视觉效果进一步优化。 以下是一个简化的 Python 示例,模拟 ISP Pipeline 的部分图像处理流程: ```python def apply_black_level_correction(image): # 假设黑电平为 64 return image - 64 def apply_white_balance(image): # 简单的白平衡调整(R、G、B通道增益) r_gain, g_gain, b_gain = 1.2, 1.0, 1.1 return image * [r_gain, g_gain, b_gain] def apply_color_correction(image): # 使用一个 3x3 矩阵进行色彩变换 color_matrix = [[1.1, -0.1, 0.0], [-0.1, 1.2, -0.1], [0.0, -0.1, 1.1]] return apply_matrix_transform(image, color_matrix) def apply_gamma_correction(image): # 应用伽马校正(假设 gamma=2.2) return np.power(image / 255.0, 1/2.2) * 255 # 模拟图像处理流程 raw_image = load_raw_image() corrected_image = apply_black_level_correction(raw_image) balanced_image = apply_white_balance(corrected_image) corrected_colors = apply_color_correction(balanced_image) final_image = apply_gamma_correction(corrected_colors) ``` 上述代码展示了如何构建一个简化的 ISP 处理链,尽管它未涵盖所有实际模块,但能体现各阶段协同工作的机制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小硕算法工程师

你的鼓励将是我创作的最大动力哈

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值