二叉搜索树(篇1)判断数组是不是二叉搜索树后序遍历的结果

本文介绍了一种验证给定数组是否为二叉搜索树后序遍历的有效方法。通过分析数组中的元素顺序,可以判断这些元素是否符合二叉搜索树的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二叉搜索树(Binary Search Tree)
它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。

这里写图片描述

上图中的二叉搜索树的后序遍历在数组中是:2 9 5 15 16 17 19 18 12


思路:
数组中的最后一个节点是树的根节点,根节点右边的值都比根节点大,左边的值都比根节点小,因此数组中从后往前找所有比根节点大的都放在右子树,然后看后面的是不是都比根节点小,如果还有比根节点大的返回FALSE,如果没有则递归检查右子树和左子树。


代码


public boolean VerifySquenceOfBST(int [] sequence) {

       return VerifySquenceOfBST(sequence,0,sequence.length-1);
    }
   public boolean VerifySquenceOfBST(int [] sequence,int start,int end) {
       if(start>=end)
       {
           return true;//如果数组中只有一个节点返回TRUE
       }
       int right=start;
       int point=sequence[end];
       int i=end-1;    
       for(;i>=0;i--)
       {
           if(sequence[i]<point)
           {
               right=i;
               break;//标记右子树上节点的最左边位置
           }
       }
       for(;i>=0;i--)
       {
           if(sequence[i]>=point)
           {
               return false;//如果左子树上有比根节点大的值返回false
           }
       }
       return VerifySquenceOfBST(sequence,right+1,end-1)&&VerifySquenceOfBST(sequence,start,right);

    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值