P1013 [NOIP1998 提高组] 进制位(dfs)

P1013 [NOIP1998 提高组] 进制位(dfs)

迷惑题意。

真实题意是给定nnn行字符串,左上角是+,且a[1][i]=a[i][1]a[1][i]=a[i][1]a[1][i]=a[i][1] 都是一个字母,判断是否满足加法表。

根据题意,我们知道答案存在当且仅当为n−1n-1n1进制,因为除了+++之外,第一行或第一列都有n−1n-1n1个不同的字母代表不同的数。

所以我们就全排列n−1n-1n1个字母对应的数字[0,n−2][0,n-2][0,n2],然后对于a[i][j]a[i][j]a[i][j]进行特判,如果a[i][j]a[i][j]a[i][j]是一个字符,只需判断相加是否相等,否则只能是两个字母, 就判断相加模n−1n-1n1后是否等于a[i][j]a[i][j]a[i][j]的个位。

时间复杂度:O(n!n2)O(n! n^2)O(n!n2)

code

// Problem: P1013 [NOIP1998 提高组] 进制位
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P1013
// Memory Limit: 125 MB
// Time Limit: 1000 ms
// Date: 2021-03-18 14:11:01
// --------by Herio--------

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull; 
const int N=15,M=2e4+5,inf=0x3f3f3f3f,mod=1e9+7;
#define mst(a,b) memset(a,b,sizeof a)
#define PII pair<int,int>
#define fi first
#define se second
#define pb emplace_back
#define SZ(a) (int)a.size()
#define IOS ios::sync_with_stdio(false),cin.tie(0) 
void Print(int *a,int n){
	for(int i=1;i<n;i++)
		printf("%d ",a[i]);
	printf("%d\n",a[n]); 
}
int n;
string a[N][N];
int b[N];
char c[N];
map<char,int>mp;
int main(){
	IOS;
	cin>>n;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++) cin>>a[i][j];
	for(int i=2;i<=n;i++) c[i-1]=a[1][i][0],b[i-1]=i-2;
	do{
		for(int i=1;i<n;i++)
			mp[c[i]]=b[i];
		int ok=1;
		for(int i=2;i<=n;i++){
			if(!ok) break;
			for(int j=2;j<=n;j++){
				int x=mp[a[i][1][0]]+mp[a[1][j][0]];
				if(SZ(a[i][j])>1){
					if(x>=n-1&&x%(n-1)==mp[a[i][j][1]]) continue;
					else {
						ok=0;break;
					}
				}
				else {
					if(x==mp[a[i][j][0]]) continue;
					else {
						ok=0;break;
					}
				}
			}
		}
		if(ok){
			for(int i=1;i<n;i++)
				cout<<c[i]<<"="<<b[i]<<" ";
			cout<<'\n'<<n-1<<'\n';
			return 0;
		}
	}while(next_permutation(b+1,b+n));
	puts("ERROR!");
	return 0;
}
### NOIP2000 提高进制转换题目解析 对于NOIP2000提高中的进制转换问题,虽然具体题目未直接提及[^1],可以借鉴其他年份相似类型的题目及其解决方法来进行分析。 #### 进制转换基本原理 在计算机科学中,不同进制之间的相互转化是一个基础知识点。通常涉及的是二进制、八进制、十进制以及十六进制间的互转。例如,在处理这类问题时,会先将给定数值由原进制形式转化为易于操作的形式——通常是十进制,然后再按照目标进制的要求重新表示出来。 针对特定场景下的进制转换: - **从低级到高级**:当需要从小于等于十进制(如二进制或八进制)向更高数的进制转变时,可以通过不断除以新基数并记录每次相除所得余数的方式完成。 - **从高级到低级**:相反地,如果是要降低当前使用的进制,则应采用乘法累积的方法逐步构建新的表达方式。 考虑到NOIP竞赛的特点,参赛者可能会遇到如下两种主要情况之一: ##### 十进制与其他任意进制间互相转换 此过程相对直观简单,只需遵循上述提到的原则即可实现自动化编程解答。比如要将一个十进制整数`N`转变为指定的目标进制`B`: ```python def decimal_to_base(N, B): result = "" while N != 0: remainder = N % B result += str(remainder) N //= B return result[::-1] or "0" ``` ##### 多种非十进制之间直接转换 这种情况下,最简便的做法往往是先统一至十进制作为中间桥梁,之后再做进一步变换。即先利用已知规则把源数据映射回十进制空间内,随后依据目的端的需求调整其表现形态。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的Herio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值