P2922 [USACO08DEC]Secret Message G(Trie)

本文介绍了如何利用Trie树解决USACO竞赛中的字符串最大前缀匹配问题。通过构建Trie树并维护节点信息,可以高效地进行模式串与文本串的匹配,实现O(n)时间复杂度的查询。代码示例展示了具体的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P2922 [USACO08DEC]Secret Message G(Trie)

Trie 可用用于统计字符串的个数和前缀和匹配等问题。

题意:给定mmm个文本串,nnn个模式串。

求每个模式串与多少个文本串的最大前缀相同。

mmm个文本串构造TrieTrieTrie,然后每次O(n)O(n)O(n)查找即可。

TrieTrieTrie时,维护两个变量,一个是经过该结点的次数sss,一个是以该结点为结尾的字符串个数ededed

然后计算贡献的时候,跑一遍字符串即可,每次加上ed,若没遍历完则此时的sum就是答案,否则还要加上a[p].s-a[p].ed,a[p].s包括了a[p].ed,而a[p].ed之前被统计过,所以只需加上真前缀为该模式串的文本串个数。

code

// Problem: P2922 [USACO08DEC]Secret Message G
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P2922
// Memory Limit: 125 MB
// Time Limit: 1000 ms
// Date: 2021-07-06 15:48:40
// --------by Herio--------

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull; 
const int N=5e4+5,M=5e5+5,inf=0x3f3f3f3f,mod=1e9+7;
#define mst(a,b) memset(a,b,sizeof a)
#define PII pair<int,int>
#define fi first
#define se second
#define pb emplace_back
#define SZ(a) (int)a.size()
#define IOS ios::sync_with_stdio(false),cin.tie(0) 
void Print(int *a,int n){
	for(int i=1;i<n;i++)
		printf("%d ",a[i]);
	printf("%d\n",a[n]); 
}
struct node{
	int nt[2],s,ed;
}a[M];
int b[N],len,cnt;
void ins(){
	int p=0;
	for(int j=1;j<=len;j++){
		if(!a[p].nt[b[j]]) a[p].nt[b[j]]=++cnt;
		p=a[p].nt[b[j]];
		a[p].s++;
	}
	a[p].ed++;
}
ll que(){
	ll ans=0;
	int p=0;
	bool ok=true;
	for(int i=1;i<=len;i++){
		if(!a[p].nt[b[i]]){
			ok=0;break;
		} 
		p=a[p].nt[b[i]];
		ans+=a[p].ed;
	}
	return ok?ans+a[p].s-a[p].ed:ans;
}
int main(){
	int n,m;scanf("%d%d",&m,&n);
	for(int i=1;i<=m;i++){
		scanf("%d",&len);
		for(int j=1;j<=len;j++) scanf("%d",&b[j]);
		ins();
	}
	for(int i=1;i<=n;i++){
		scanf("%d",&len);
		for(int j=1;j<=len;j++) scanf("%d",&b[j]);
		printf("%lld\n",que());
	}
	return 0;
}
内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的Herio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值