P2055 [ZJOI2009]假期的宿舍(二分图&最大流)
人和床的匹配,关键是建图。
首先在校且不回家的人 add(i,i)
然后如果i和j认识,并且j在学校,那么建边add(i,j)
然后对于(不在学校或者(在学校不回家的))人进行匹配。
时间复杂度:O(nm)O(nm)O(nm)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int N=55,M=2e4+5,inf=0x3f3f3f3f,mod=1e9+7;
const int hashmod[4] = {402653189,805306457,1610612741,998244353};
#define mst(a,b) memset(a,b,sizeof a)
#define db double
#define PII pair<int,int>
#define PLL pair<ll,ll>
#define x first
#define y second
#define pb emplace_back
#define SZ(a) (int)a.size()
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define per(i,a,b) for(int i=a;i>=b;--i)
#define IOS ios::sync_with_stdio(false),cin.tie(nullptr)
void Print(int *a,int n){
for(int i=1;i<n;i++)
printf("%d ",a[i]);
printf("%d\n",a[n]);
}
template <typename T> //x=max(x,y) x=min(x,y)
void cmx(T &x,T y){
if(x<y) x=y;
}
template <typename T>
void cmn(T &x,T y){
if(x>y) x=y;
}
struct node{
int to,nt;
}e[M];
int cnt,h[N];
int n;
void add(int u,int v){
e[++cnt]={v,h[u]},h[u]=cnt;
}
int vis[N],mh[N];
int id;
bool find(int u){
for(int i=h[u];i;i=e[i].nt){
if(vis[e[i].to]==id) continue;
int v=e[i].to;
vis[v]=id;
if(!mh[v]||find(mh[v])){
mh[v]=u;
return true;
}
}
return false;
}
int in[N],ho[N];
int main(){
int T;
scanf("%d",&T);
while(T--){
id = cnt = 0;
scanf("%d",&n);
mst(h,0);
mst(mh,0);
mst(vis,0);
rep(i,1,n) scanf("%d",&in[i]);
rep(i,1,n){
scanf("%d",&ho[i]);
if(in[i]&&!ho[i]){
add(i,i);
}
}
rep(i,1,n)
rep(j,1,n){
int x;scanf("%d",&x);
if(x && in[j]) add(i,j);
}
int ok = 1;
rep(i,1,n){
if(!in[i]||(in[i]&&!ho[i])){
++id;
if(!find(i)){
ok = 0;
break;
}
}
}
puts(ok?"^_^":"T_T");
}
return 0;
}
做法2:网络流
源点连需要床的人 i 。
汇点连学校的人。
如果i 和j认识,且 j在学校, i就连j的床。
注意N开两倍,因为 人和床都要标号。
时间复杂度:O(n2m)O(n^2m)O(n2m)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int N=105,M=2e4+5,inf=0x3f3f3f3f,mod=1e9+7;
const int hashmod[4] = {402653189,805306457,1610612741,998244353};
#define mst(a,b) memset(a,b,sizeof a)
#define db double
#define PII pair<int,int>
#define PLL pair<ll,ll>
#define x first
#define y second
#define pb emplace_back
#define SZ(a) (int)a.size()
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define per(i,a,b) for(int i=a;i>=b;--i)
#define IOS ios::sync_with_stdio(false),cin.tie(nullptr)
void Print(int *a,int n){
for(int i=1;i<n;i++)
printf("%d ",a[i]);
printf("%d\n",a[n]);
}
template <typename T> //x=max(x,y) x=min(x,y)
void cmx(T &x,T y){
if(x<y) x=y;
}
template <typename T>
void cmn(T &x,T y){
if(x>y) x=y;
}
struct Dinic{
//Dinic O(n^2m)
int n,m,st,ed;
int id(int x,int y){
return (x-1)*m+y;
}
struct edge{
int to,nt;
ll w;
}e[M];
int h[N],cur[N],cnt,dep[N];
void init(int _st,int _ed){
st=_st,ed=_ed;
cnt=1;mst(h,0);
}
Dinic(int _st=0,int _ed=0){init(_st,_ed);}
void add(int u,int v){
e[++cnt]={v,h[u],1},h[u]=cnt;
e[++cnt]={u,h[v],0},h[v]=cnt;
}
ll dfs(int u,ll c){ //search for augment path
if(u==ed) return c;
ll res=c;
for(int &i=cur[u];i;i=e[i].nt){
int v=e[i].to; ll w=e[i].w;
if(w&&dep[v]==dep[u]+1){
ll now=dfs(v,min(res,w));
if(!now) dep[v]=1;
else e[i].w-=now,e[i^1].w+=now,res-=now;
}
if(!res) return c;
}return c-res;
}
bool bfs(){ //layer the graph
queue<int>q;q.push(st);mst(dep,0),dep[st]=1;
while(!q.empty()){
int u=q.front();q.pop();cur[u]=h[u];
for(int i=h[u];i;i=e[i].nt){
int v=e[i].to;ll w=e[i].w;
if(w&&!dep[v]) dep[v]=dep[u]+1,q.push(v);
}
}return dep[ed];
}
ll dinic(){
ll s=0;
while(bfs()) s+=dfs(st,inf);
return s;
}
}G;
int in[N],ho[N];
int main(){
int T;
scanf("%d",&T);
while(T--){
int n;scanf("%d",&n);
int ed=2*n+1;
int sum = 0;
G.init(0,ed);
rep(i,1,n) scanf("%d",&in[i]);
rep(i,1,n){
scanf("%d",&ho[i]);
if(!in[i]||(in[i]&&!ho[i])){
sum++;
G.add(0,i);
}
if(in[i]){
G.add(i+n,ed);
}
if(in[i]&&!ho[i]){
G.add(i,i+n);
}
}
rep(i,1,n){
rep(j,1,n){
int x;scanf("%d",&x);
if(x&&in[j]){
G.add(i,j+n);
}
}
}
int ok = G.dinic()==sum;
puts(ok?"^_^":"T_T");
}
return 0;
}