es - elasticsearch mapping - parameters - similarity

本文探讨了程序开发中不断追求完美的精神,并通过Elasticsearch的相似度分析实例,展示了如何设置和使用`similarity`进行文本匹配。通过创建索引、索引文档以及执行搜索查询,我们看到不同搜索方式下的评分和结果排序,这有助于理解如何在信息检索场景下优化文本相似度计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

世界上并没有完美的程序,但是我们并不因此而沮丧,因为写程序就是一个不断追求完美的过程。

问 :similarity有什么特点?
答 :
在这里插入图片描述
问 :similarity如何使用?
答 :

# similarity
PUT /similarity_test
{
  "mappings" : {
    "properties" : {
      "name1" : {
        "type"   : "text",
        "fields" : {
          "boolean" : {
            "type"       : "text",
            "similarity" : "boolean"
          }
        }
      }
    }
  }
}

# 索引
POST /similarity_test/_doc/1
{
  "name1" : "hello good"
}

# 索引
POST /similarity_test/_doc/2
{
  "name1" : "hello me hello"
}

# 搜索,有评分排行
GET /similarity_test/_search
{
  "query" : {
    "match" : {
      "name1" : "hello"
    }
  }
}

# 结果
{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 0.16994905,
    "hits" : [
      {
        "_index" : "similarity_test",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 0.16994905,
        "_source" : {
          "name1" : "hello me hello"
        }
      },
      {
        "_index" : "similarity_test",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.14181954,
        "_source" : {
          "name1" : "hello good"
        }
      }
    ]
  }
}


# 搜索,没有评分排行
GET /similarity_test/_search
{
  "query" : {
    "match" : {
      "name1.boolean" : "hello"
    }
  }
}

# 结果
{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "similarity_test",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "name1" : "hello good"
        }
      },
      {
        "_index" : "similarity_test",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 1.0,
        "_source" : {
          "name1" : "hello me hello"
        }
      }
    ]
  }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这是谁的博客?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值