一、前导
1.Kruskal和Prim的回顾
首先我们对 K r u s k a l Kruskal Kruskal和 P r i m Prim Primu算法进行回顾:
- K r u s k a l Kruskal Kruskal算法的基本思想是维护一个森林,查询两个结点是否在同一棵树中,并连接两棵树。在实际的算法过程中,我们需要对边集进行排序,复杂度 O ( m log m ) O(m \log m) O(mlogm),并使用 O ( m log n ) O(m \log n) O(mlogn)并查集维护集合。总复杂度 O ( m log m ) O(m \log m) O(mlogm)。因此对于稠密图, K r u s k a l Kruskal Kruskal显得有些"水土不服"。
- P r i m Prim Prim算法的基本思想是每次需要寻找距离最小的一个结点(与Dijkstra’s Algorithm相似),以及新的边来更新其它结点的距离。在寻找距离最小点的过程中,可以暴力查找,也可以采用堆维护进行优化。在使用二叉堆优化的加持下,复杂度 O ( ( n + m ) log n ) O((n + m)\log n) O((n+m)logn)。相比于 K r u s k a l Kruskal Kruskal, P r i m Prim Prim更适用于稠密图。
对于最小生成树,我们一般将这类问题进行分类,对于稀松图选择 K r u s k a l Kruskal Kruskal求解,对于稠密图则使用 P r i m Prim Prim算法进行求解。
2.Boruvka算法引入
很容易发现,对于某些毒瘤的问题,边的数量极其大,而边集内部又存在各种规律可能需要套上各种数据结构加以优化。但是此时
K
r
u
s
k
a
l
Kruskal
Kruskal和
P
r
i
m
Prim
Prim并不能很好的嵌合进这些数据结构。此时我们可以引入
B
o
r
u
v
k
a
Boruvka
Boruvka算法。
对于 B o r u v k a Boruvka Boruvka算法,一个比较笼统的表述是,一个多路增广版本的 K r u s k a l Kruskal Kruskal。它的思想是一开始所有点看做独立子集,每次遍历边找到两个集合(连通块)之间连接的最短边,不断扩大集合(连通块)直到所有点合并为一个集合(连通块)。
二、Brouvka原理与实现
1.基本原理
在并查集算法中,初始状态下我们将每个点视为一个独立的点集,并不断地合并集合。在 B r o u v k a Brouvka Brouvka算法中,我们在一开始将所有点视为独立子集,每次我们找到两个集合(即为连通块)之间的最短边,然后扩展连通块进行合并。
可以发现, B o r u v k a Boruvka Boruvka算法将求解最小生成树的问题分解为求连通块间最小边的问题。它的基本思想是:
生成树中所有顶点必然是连通的,所以两个不相交集必须连接起来才能构成生成树,而且所选择的连接边的权重必须最小,才能得到最小生成树。
2.基本过程
- 首先将所有点视为各自独立的集合,初始化一个空的 M S T MST MST;
- 当子集个数大于
1
1
1的时候,对各个子集和执行以下操作:
- 找到与当前集合有边的集合,选出权值最小的边;
- 如果该权值最小的边不在 M S T MST MST中;
3.实现
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
const int M = 1e6 + 10;
struct node { int u, v, w; } edge[M];
int f[N], best[N];
bool vis[N];
int n, m;
int find(int x){
return f[x] == x ? x : find(f[x]);
}
inline const bool cmp(int u, int v){
if(v == 0) return 1;
if(edge[u].w != edge[v].w) return edge[u].w < edge[v].w;
return u < v;
}
inline void init(){
cin >> n >> m;
for(int i = 1; i <= m; i++) cin >> edge[i].u >> edge[i].v >> edge[i].w;
for(int i = 1; i <= n; i++) f[i] = i;
}
inline int boruvka(){
memset(vis, 0, sizeof(vis));
int ans = 0, cnt = 0;
bool status = true;
while(true){
status = false;
//遍历边集
for(int i = 1; i <= m; i++){
if(!vis[i]){
int uu = find(edge[i].u), vv = find(edge[i].v);
if(uu == vv) continue;
if(cmp(i, best[uu])) best[uu] = i;
if(cmp(i, best[vv])) best[vv] = i;
}
}
//遍历点集
for(int i = 1; i <= n; i++){
if(best[i] && !vis[best[i]]){
status = true, cnt++, ans += edge[best[i]].w;
vis[best[i]] = 1;
int uu = find(edge[best[i]].u), vv = find(edge[best[i]].v);
f[uu] = vv;
}
}
}
if(cnt == n - 1) return ans;
return -1;
}
signed main(){
init();
boruvka();
return 0;
}