DeepSeek “源神”启动!「GitHub 热点速览」

上周,DeepSeek 官方宣布将陆续发布 5 个开源项目。本周一开源社区就迎来了首发之作——FlashMLA!该项目开源后,不到一天 Star 数已突破 6k,并且还在以惊人的速度持续飙升。

GitHub 地址:github.com/deepseek-ai/FlashMLA

FlashMLA 是一个针对 Hopper GPU 优化的高效 MLA(Multi-Head Latent Attention)解码内核,能够显著提升大规模语言模型(LLM)的推理效率。对于普通用户来说,就是用了 FlashMLA 同样的 GPU 硬件条件下,LLM 的聊天机器人不仅可以更快速地响应,还能处理更长的文本。

Tips:Hopper 是英伟达在 2022 年推出的 GPU 架构,采用 NVIDIA Hopper GPU 架构的显卡包括 H100、H200、H800 系列。

回顾上周的热门开源项目,微软开源的屏幕解析 AI 工具 OmniParser 表现亮眼(9k Star/周),它能够将用户界面的截图解析为结构化、易于理解的元素,提升 AI 理解 GUI 的能力。让 AI 能够像人类一样与网站进行交互的 Browser-use,能够在浏览器上自动完成搜索、数据提取和填表等操作。将代码仓库转化成一个文件的 Repomix,轻松打通代码与 AI 的桥梁。除了增强 AI 能力的开源项目,快速查看和管理 K8s 集群的命令行工具 K9s、开源协作式 Wiki 和文档平台 Docmost,也值得关注。

最后,是一本介绍大模型基础的开源书籍《大模型基础》,全面地介绍了入门大模型的核心知识,是不可错过的 LLM 学习资源!

1ea6f3767a369dce09c8252402750dfe.png

1. 热门开源项目

1.1 让 AI 操作你的浏览器:Browser-use

主语言:PythonStar:32k周增长:4k

该项目通过 AI 代理实现自动化操作浏览器,让 AI 能够像人类一样与网站进行交互。它基于 Playwright 框架实现浏览器自动化操作,并通过 LangChain 和 LLM 等技术,将 AI 能力与浏览器的交互能力相结合,能够完成自动搜索、数据提取和表格填写等任务。用户可以通过简单的代码启动 AI 代理,并直观地测试和观察操作过程。

from langchain_openai import ChatOpenAI
from browser_use import Agent
import asyncio
from dotenv import load_dotenv
load_dotenv()

async def main():
    agent = Agent(
        task="Go to HelloGitHub, search for 'browser-use', click on the first post and return the publish comment.",
        llm=ChatOpenAI(model="gpt-4o"),
    )
    result = await agent.run()
    print(result)

asyncio.run(main())

GitHub 地址→github.com/browser-use/browser-use

1.2 开源协作式 Wiki 和文档平台:Docmost

主语言:TypeScriptStar:10k周增长:1.3k

这是一款免费、开源的知识管理和文档协作平台,可作为 Confluence 和 Notion 的开源替代品。它界面清爽、功能丰富,提供类似维基(wiki)的结构化知识管理和多人实时协作编辑文档的功能,并支持画图、权限管理、评论、页面历史和搜索等,适用于企业内部的知识库、文档共享和协作等场景。

GitHub 地址→github.com/docmost/docmost

1.3 快速查看和管理 K8s 集群的命令行工具:K9s

主语言:GoStar:28k周增长:200

这是一款用于管理 Kubernetes 集群的命令行工具,帮助用户轻松监控和管理 K8s 集群。它提供直观的终端界面和交互体验,可实时跟踪集群中的应用运行状态,并支持多种资源管理(Pods、Deployments、Services 等)、查看日志、自定义配置和插件扩展等功能。

GitHub 地址→github.com/derailed/k9s

1.4 打通代码与 AI 的桥梁:Repomix

主语言:TypeScriptStar:10k周增长:1k

该项目是用于将整个代码仓库打包成适合 AI 处理的单一文件(纯文本、Markdown、XML),支持远程仓库地址和本地仓库。它通过内置的安全检查和代码压缩技术,能够有效减少输出文件的上下文令牌(token)数量,并确保不泄漏敏感信息。生成的文件可以方便地输入到 ChatGPT、Claude、Llama 等 AI 工具中,适用于代码审查、文档生成和测试用例编写等任务。

GitHub 地址→github.com/yamadashy/repomix

1.5 解析屏幕的 AI 工具:OmniParser

主语言:PythonStar:16k周增长:9k

这是一款微软开源的屏幕解析工具,能够将用户界面的截图解析为结构化且易于处理的元素。它采用 Python 开发,基于 YOLO、BLIP2 和 Florence 等模型,实现较为精准的图标识别并生成描述性文本,支持与多种主流大语言模型(GPT-4V)集成,适用于开发桌面自动化操作的应用。

GitHub 地址→github.com/microsoft/OmniParser

2. HelloGitHub 热评

在此章节中,我们将为大家介绍本周 HelloGitHub 网站上的热门开源项目,我们不仅希望您能从中收获开源神器和编程知识,更渴望“听”到您的声音。欢迎您与我们分享使用这些开源项目的亲身体验和评价,用最真实反馈为开源项目的作者注入动力。

2.1 为开发者准备的速查表:Reference

主语言:Other

这是一份专为开发者准备的快速参考手册(cheat sheet)集合,旨在为开发者提供简洁、直观的速查表,内容涵盖多种编程语言、框架、Linux 命令和数据库等。

项目详情→hellogithub.com/repository/747de4f19b384ff197698089038f6e9e

2.2 《大模型基础》:Foundations-of-LLMs

主语言:Other

该书是由浙江大学 DAILY 实验室开源的大语言模型教材,内容涵盖传统语言模型、大语言模型架构演化、Prompt 工程、参数高效微调、模型编辑、检索增强生成等方面。

项目详情→hellogithub.com/repository/d3c56213ee644bfc8a34d5b6c395e7f2

3. 结尾

以上就是本期「GitHub 热点速览」的全部内容,希望这些开源项目能激发你的兴趣,找到你下一个想去尝试的工具!如果你也发现了好玩、有趣的 GitHub 开源项目想要分享,欢迎来 HelloGitHub 与我们交流心得、讨论使用体验。

往期回顾

- END -

👆 关注「HelloGitHub」第一时间收到更新👆

点击阅读原文访问开源社区

### 如何克隆和部署 DeepSeek VL2 GitHub 项目代码 #### 准备工作 为了成功克隆和部署 DeepSeek VL2 的 GitHub 项目代码,确保环境已经安装 Git 和必要的依赖项。对于特定的硬件加需求,建议配置支持 GPU 或 TPU 的计算资。 #### 克隆仓库 通过命令行工具可以方便地获取最新的码副本。打开终端窗口输入如下指令来克隆目标仓库: ```bash git clone https://github.com/DeepSeekAI/VL2.git ``` 此操作会创建一个名为 `VL2` 的本地目录,并从中检出最新版本的文件[^1]。 #### 安装依赖包 进入刚刚克隆下来的项目根目录下执行 Python 虚拟环境初始化以及 pip 工具安装所需库的操作: ```bash cd VL2 python3 -m venv env source env/bin/activate pip install --upgrade pip pip install -r requirements.txt ``` 上述脚本将激活虚拟环境中运行的应用程序实例,并更新至最新稳定版 Pip 后加载所有必需品到当前 session 中。 #### 配置模型路径 根据官方文档说明,在启动服务前需指定预训练权重的位置以便于后续调用。编辑 `.env` 文件设置变量指向已下载好的 MNN 模型位置: ```ini MODEL_PATH=/path/to/deployed/models/ ``` 这里 `/path/to/deployed/models/` 应替换为实际存储 DeepSeek-R1-7B-Qwen-MNN 及 Qwen2-VL-2B-Instruct-MNN 这两个大模型的具体地址。 #### 启动应用服务器 最后一步就是让整个系统跑起来啦!继续在命令提示符里键入下面这条语句就可以开启 Web API 接口监听端口了: ```bash uvicorn main:app --host 0.0.0.0 --port 8000 ``` 现在应该可以在浏器访问 http://localhost:8000 来验证一切正常运作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值