ResUNet 改进:融合DLKA注意力机制

1.创新点分析

1. 概述

本报告详细分析了一个名为UResnet的深度学习网络架构,该网络结合了U-Net的编码器-解码器结构、ResNet的残差连接以及新型的Dilated Large Kernel Attention(DLKA)注意力机制

该网络设计用于图像分割任务,通过多尺度特征提取和融合实现精确的像素级预测。

2. 网络架构

UResnet采用典型的编码器-解码器结构,包含以下几个核心组件:

2.1 编码器部分

编码器由四个下采样阶段组成,每个阶段包含:

  • 一个VGGBlock或残差块(BasicBlock/BottleNeck)

  • 最大池化层进行下采样

2.2 解码器部分

解码器对应四个上采样阶段,每个阶段包含:

  • 上采样操作(双线性插值)

  • 特征拼接(skip connection)

  • VGGBlock

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值