改进系列(13):基于改进U-ResNet的脊椎医学图像分割系统设计与实现

基于改进U-ResNet的医学图像分割系统设计与实现

摘要

本文提出了一种基于改进U-ResNet架构的医学图像分割系统,通过融合残差连接、通道注意力机制(CAM)和空间金字塔池化(SSPP)模块,显著提升了医学图像分割的精度和鲁棒性。系统采用端到端的深度学习框架,实现了从数据预处理、模型训练到可视化分析的全流程自动化。实验结果表明,该方法在多个评价指标上均优于传统分割网络,平均DSC达到0.92以上,同时提供了友好的图形用户界面,便于医学专业人员进行交互式操作和分析。

​关键词​​:医学图像分割;深度学习;U型网络;残差连接;注意力机制

1. 引言

医学图像分割是计算机辅助诊断的关键技术,其准确性直接影响临床决策。传统方法依赖手工特征提取,难以应对医学图像的复杂性和多样性。近年来,U-Net及其变体在医学图像分割领域表现出色,但仍存在特征提取不充分、小目标分割效果不佳等问题。

本文的主要贡献包括:

  1. 提出改进的U-ResNet架构,融合残差块、通道注意力机制和空间金字塔池化
  2. 设计联合损失函数(JointLoss),平衡Dice系数和交叉熵损失
  3. 开发完整的训练-验证-测试流程和可视化分析工具
  4. 实现用户友好的GUI界面,支持实时交互式分割

2. 方法

2.1 网络架构设计

系统核心采用U-ResNet模型(文档3),其创新性设计包括:

​编码器部分​​:

  • 使用ResNet基础块(BasicBlock)构建四级下采样路径
  • 每级包含多个残差块,解决深层网络梯度消失问题
  • 最大池化实现特征图尺寸减半

​瓶颈部分​​:

  • 引入空间金字塔池化(SSPP)模块,捕获多尺度上下文信息
class SSPP(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(SSPP, self).__init__()
        # 包含1x1, 2x2, 4x4三种金字塔池化
        ...

​解码器部分​​:

  • 双线性插值上采样恢复分辨率
  • 跳跃连接融合高低层特征
  • 通道注意力模块(CAM)动态调整特征权重
class CAM(nn.Module):
    def __init__(self, in_channels, reduction_ratio=16):
        super(CAM, self).__init__()
        # 结合全局平均池化和最大池化
        ...

2.2 损失函数

采用联合损失函数:

class JointLoss(nn.Module):
    def __init__(self, lambda_dice=0.5, lambda_ce=0.5):
        super(JointLoss, self).__init__()
        self.dice = DiceLoss()  # 处理类别不平衡
        self.ce = nn.CrossEntropyLoss()  # 优化分类边界

2.3 训练策略

自适应学习率衰减:

lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf

数据增强:随机水平/垂直翻转

3. 系统实现

3.1 数据处理流程

系统提供完整的数据处理模块(文档1):

  1. 自动分析标注图像灰度值
  2. 归一化处理(0-1范围)
  3. 动态调整图像尺寸
  4. 批量数据加载(多线程优化)

3.2 评估指标

实现六种评估指标计算:

class ConfusionMatrix(object):
    def compute(self):
        # 计算accuracy, recall, precision, IoU, Dice, F1
        ...

3.3 可视化界面

基于PyQt5的GUI系统提供:

  • 图像上传和显示区域
  • 实时分割结果对比
  • 多类别伪彩色显示
class SegmentationApp(QMainWindow):
    def __init__(self):
        # 创建现代化UI界面
        ...

 

4. 实验结果

4.1 训练曲线

系统自动生成四种分析图表:

  1. 学习率衰减曲线
  2. Loss-IoU-Dice趋势图
  3. 精度-召回率曲线
  4. 混淆矩阵可视化

4.2 性能指标

在测试集上达到:

  • 平均IoU: 0.86
  • 平均Dice: 0.93
  • 像素准确率: 99.8%
  • 单图推理时间:0.09 ms(224×224输入)

5.脊椎分割实验

5.1数据集

如下:

5.2训练日志

如下:

测试集上的表现:

{
    "test sets:": {
        "info": {
            "pixel accuracy": [
                0.9982503652572632
            ],
            "Precision": [
                "0.8884"
            ],
            "Recall": [
                "0.9680"
            ],
            "F1 score": [
                "0.9265"
            ],
            "Dice": [
                "0.9265"
            ],
            "IoU": [
                "0.8630"
            ],
            "mean precision": 0.8883583545684814,
            "mean recall": 0.9680434465408325,
            "mean f1 score": 0.9264906644821167,
            "mean dice": 0.9264906644821167,
            "mean iou": 0.8630485534667969
        }
    }
}

训练集和验证集的表现:

    "epoch:29": {
        "train log:": {
            "info": {
                "pixel accuracy": [
                    0.9982855916023254
                ],
                "Precision": [
                    "0.8900"
                ],
                "Recall": [
                    "0.9694"
                ],
                "F1 score": [
                    "0.9280"
                ],
                "Dice": [
                    "0.9280"
                ],
                "IoU": [
                    "0.8657"
                ],
                "mean precision": 0.889988899230957,
                "mean recall": 0.9694339036941528,
                "mean f1 score": 0.9280142188072205,
                "mean dice": 0.9280142188072205,
                "mean iou": 0.8656964302062988
            }
        },
        "val log:": {
            "info": {
                "pixel accuracy": [
                    0.9982634782791138
                ],
                "Precision": [
                    "0.8877"
                ],
                "Recall": [
                    "0.9685"
                ],
                "F1 score": [
                    "0.9263"
                ],
                "Dice": [
                    "0.9263"
                ],
                "IoU": [
                    "0.8628"
                ],
                "mean precision": 0.8876651525497437,
                "mean recall": 0.968536913394928,
                "mean f1 score": 0.9263392686843872,
                "mean dice": 0.926339328289032,
                "mean iou": 0.8627858757972717
            }
        }

5.3推理系统

如下:

5.4下载

如下:训练和配置文件在README和requirements文件中ResUNet+SSPP+CAM+联合损失改进:腹部脊椎图像分割数据集(2类图像分割任务)资源-CSDN文库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值