EfficientNet 改进:StripCGLU模块的创新与应用

1.创新点分析

在这篇博客中,我将详细介绍一个基于EfficientNet的改进模型,

该模型引入了创新的StripCGLU模块,旨在提升网络性能同时保持计算效率。

代码概述

这段代码实现了一个改进版的EfficientNet-b0模型,主要创新点在于用StripCGLU模块替换了部分MBConv块。代码结构清晰,包含以下几个主要部分:

  1. StripCGLU模块定义

  2. 改进版EfficientNet模型构建

  3. 测试代码

StripCGLU模块详解

StripCGLU是这段代码的核心创新点,让我们深入分析它的实现:

class StripCGLU(nn.Module):
    def __init__(self, channels, kernel_size=3, stride=1):
        super().__init__()
        self.conv1 = nn.Conv2d(channels, channels * 2, kernel_size=(1, kernel_size),
                               stride=stride, padding=(0, kernel_si
内容概要:本文详细介绍了基于PyTorch实现的EfficientNet-B0模型及其主要组件。首先定义了基本组件如Swish激活函数、带有批归一化和激活函数的卷积层(ConvBnAct)、Squeeze-Excitation模块以及MBConvBlock模块。MBConvBlock模块包括扩展卷积、深度可分离卷积、Squeeze-Excitation机制和投影卷积,并支持残差连接。接着,定义了一个基于Transformer分类模块TransformerClassifier),用于替代传统的全连接层进行分类任务。最后,构建了完整的EfficientNet模型,该模型通过宽度和深度系数对网络结构进行缩放,并使用上述组件搭建了多个阶段的卷积块。此外,EfficientNet分类头采用了Transformer模块。文中还提供了一个便捷函数`efficientnet_b0`用于快速构建EfficientNet-B0模型,并进行了简单的测试验证。 适合人群:具备一定深度学习和PyTorch基础,对卷积神经网络(CNN)和Transformer有一定了解的研发人员或学生。 使用场景及目标:①理解EfficientNet架构的设计思想及其各组件的功能;②学习如何使用PyTorch实现先进的深度学习模型;③掌握Squeeze-Excitation、MBConvBlock和Transformer等关键技术点的具体实现方式;④为实际项目中应用EfficientNet模型提供参考。 阅读建议:本文涉及较多的技术细节,建议读者在阅读时结合PyTorch官方文档或其他相关资料一起学习,以便更好地理解和实践代码。同时,可以尝试修改代码中的参数设置,观察不同配置对模型性能的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值