- 博客(311)
- 资源 (15)
- 收藏
- 关注
原创 05 网络信息内容安全--对抗攻击技术
咱们先举个生活例子:你平时看苹果能认出来 —— 红颜色、圆溜溜、带个小揪揪。但如果有人给苹果轻轻贴了个小贴纸,或者在表皮涂了一点点几乎看不出来的颜料,你可能还是知道这是苹果;可要是给电脑 “看” 这个被改动的苹果,它说不定就认错了,说这是 “西红柿”。这种故意给数据(比如图片、文字)做微小改动,骗人工智能(AI)认错的操作,就叫对抗攻击。关键是这改动特别 “隐蔽”:人眼几乎看不出差别,但 AI 能被绕得晕头转向。
2025-08-27 10:11:20
917
原创 04 网络信息内容安全--异常检测技术
防火墙:80%以上的攻击来源于组织内部;串联的工作方式使其无法进行复杂的检测安全访问控制:黑客可以通过身份窃取、利用系统漏洞等手段绕开安全访问控制机制作为一种积极主动的安全防护技术,对各种被动防护技术起到了极其有益的补充它从计算机网络或计算机系统中的若干关键点处收集信息,并对其分析,从中发现网络或系统中是否有违反安全策略的行为或被攻击的迹象策略:是模型的核心,具体的实施过程中,策略意味着网络安全要达到的目标防护:安全规章、安全配置、安全措施检测:异常监视、模式发现。
2025-08-26 16:18:03
844
原创 03 网络信息内容安全--社会网络分析技术
设想一个网络图G的一个子图G’(意味着G’中的点和边都只能从G中挑),其中每一个点都能通过某条路径到达另一个点,则我们说G’具备强连通性,而且是G的一个强连通子图。:与一个点通过边相连的其他点的数量和,被称为这个点的度。当年非典在香港和加拿大,英国,新加坡三国的流行,最终都能追溯到一个来香港参加宴会的广东医生(患者1),通过一系列超级节点(患者6,35,130,127)传播。:G的一个极大的强连通子图G’‘(意味着再往G’'加任何G中剩下的点,都会破坏其强连通性)被称为G的一个强连通分量。
2025-08-26 14:44:21
596
原创 02 网络信息内容安全--网络信息内容过滤技术
假设每条边的长度相等,那么包含边数最少的路径,便是所谓最短路径(shortest path),最短路径的长度一般被认为是两点之间的距离(distance);:设想一个网络图G的一个子图G’(意味着G’中的点和边都只能从G中挑),其中每一个点都能通过某条路径到达另一个点,则我们说G’具备强连通性,而且是G的一个强连通子图。当年非典在香港和加拿大,英国,新加坡三国的流行,最终都能追溯到一个来香港参加宴会的广东医生(患者1),通过一系列超级节点(患者6,35,130,127)传播。算到了A的PageRank上。
2025-08-26 11:53:58
708
原创 01 网络信息内容安全--绪论
【【图解贝叶斯公式】1小时吃透大学四年没整明白的贝叶斯分析推导及垃圾邮件过滤实例(朴素贝叶斯/机器学习算法/MCMC算法/人工智能高数)】https://www.bilibili.com/video/BV1v3VUzjEqN?–人工智能/机器学习/深度学习】https://www.bilibili.com/video/BV1TAtwzTE1S?–人工智能/机器学习/深度学习】https://www.bilibili.com/video/BV1TAtwzTE1S?【都2022年了,居然还不懂社会网络分析?
2025-08-21 15:33:10
649
原创 2.1 人工智能基本任务
例子:自动驾驶汽车知识表示存储交通规则 → 推理判断路权 → 搜索规划路径 → 预测行人行为 → 优化能耗 → 仿生算法模拟群体驾驶。感知——AI的「感官系统」,如人脸识别捕捉107个特征点;认知与抽象——AI的「思维提炼术」,把图像抽象为‘猫=胡须+圆脸’;行动——AI的「物理执行者」,如机械臂精准抓取零件;学习——AI的「进化引擎」,AlphaGo通过1亿局对弈迭代策略;推理与决策——AI的「指挥官」,像医疗系统诊断病症并推荐疗法。神经科学驱动的AI知识表示是AI的基础任务认知与抽
2025-06-16 17:09:41
193
原创 1.3 人工智能的应用领域
1.3-01疾病诊断:AI可以通过分析医学影像来帮助医生检测疾病。药物研发:AI在药物发现阶段可以通过分析大量的生物医学数据,预测药物的有效性和安全性。医疗机器人:智能机器人可以在医院中承担一些辅助任务。健康管理:AI可以对个人的健康数据进行分析,为用户提供个性化的健康建议。
2025-06-16 16:26:06
403
原创 1.2 人工智能的分类
无需明确设计即可构建或训练,以执行特定任务或解决特定问题的智能系统。也被称为弱人工智能,因为它不具备全面的通用智能能力。典型应用:语音助手,图像识别系统、自动驾驶、机器人等。大语言模型ChatGPT 、文心一言、豆包等:基于提供的提示生成文本响应。
2025-06-16 16:06:23
1068
原创 1.1 人工智能起源与诞生
人工智能是模拟、延伸与扩展人类智能的理论、方法和技术,旨在实现智能行为自主化、高效化与人性化,以应对复杂多变的环境与挑战。AI技术通过智能算法与数据分析,深度融入各行各业,从智能制造到智慧医疗,全面重塑生产生活方式,引领社会迈向智能化新时代。核心要素智能是人工智能的核心,涉及感知、思考、决策、学习等能力,表现为机器能够像人类一样进行认知推理、识别环境并作出相应反应。适应指人工智能在复杂多变的环境中,能够灵活调整策略、快速响应变化的能力。这种能力确保了AI系统能够在不同场景下达最佳性能。
2025-06-15 11:36:16
840
原创 信息科技伦理与道德3-4:面临挑战
本文收集了351位医生的样本,获得了7020条病例诊断数据。当AI和医生在第一轮判断不同时,第二轮40%的医生修改了其答案,在AI的帮助下,医生的准确率平均提升了9%2021年,汤珂教授在华东师范大学做了一次学术报告:该报告设计了人工智能辅助人类决策的实验,发现人工智能可以更好的帮助医生进行诊断。实验分两轮,第一轮为医生自主诊断20个病例,第二轮针对同样的病例,AI首先给出诊断结果,之后看医生是否修改其判断。【TED演讲】如何让人类与人工智能合作来改善业务。清华大学社会科学学院经济所。
2025-04-29 09:39:56
512
原创 信息科技伦理与道德0:课程安排
协同过滤(Collaborative Filtering)通过用户历史行为(如点击、购买)寻找相似用户/物品进行推荐,形成"喜欢A的人也喜欢B"的强化循环。GAN通过生成器(Generator)和判别器(Discriminator)的对抗训练,可以生成逼真的人脸图像(如StyleGAN系列)。深度学习推荐系统通过内容嵌入(Embedding)建立语义关联,可能意外推荐敏感内容(如减肥食品→催吐教程)。课程关联:课程中文本生成(Text Generation)与困惑度(Perplexity)评估。
2025-04-16 15:48:41
1388
原创 图像分类项目3:识别不同鸟类
数据集来源:kaggle,网址:https://www.kaggle.com/,点击进入网站,左侧选择Datasets。进入后搜索栏搜索关键词bird。此时出现很多数据集可以选择,推荐选择第一个或者第三个。这里以第三个为例进行演示。点击进入,注册登录账号后,点击Download进行下载。下载后选择第一个压缩包进行解压。
2025-03-03 11:02:42
768
原创 图像分类项目2:鸟类图像分类
数据集来源:kaggle,网址:https://www.kaggle.com/,点击进入网站,左侧选择Datasets。进入后搜索栏搜索关键词bird。此时出现很多数据集可以选择,推荐选择第一个或者第三个。这里以第三个为例进行演示。点击进入,注册登录账号后,点击Download进行下载。下载后选择第一个压缩包进行解压。
2025-03-02 11:14:15
1381
原创 图像分类项目1:基于卷积神经网络的动物图像分类
在现代社会中,图像分类是计算机视觉领域的一个重要任务。动物图像分类具有广泛的应用,例如生态学研究、动物保护、农业监测等。通过对动物图像进行自动分类,可以帮助人们更好地了解动物种类、数量和分布情况,从而支持相关领域的决策和研究。本研究的目标是使用卷积神经网络(CNN)对动物图像进行分类。通过对大量的猫、狗和野生动物图像进行训练,建立一个准确分类不同动物类别的模型。该模型可以用于自动识别和分类新的动物图像,从而提供快速、准确的动物分类结果。
2025-03-02 10:04:52
1262
1
原创 信息科技伦理与道德3-1:智能决策
1950s-1980s:人工智能的诞生与早期发展热潮20世纪80年代-21世纪初:统计学派/机器学习/早期神经网络(模式识别)21世纪初-2017年:人工神经网络大放光彩2017年-至今:“深度强化学习”崛起发展历史总览:
2025-01-10 10:02:20
572
原创 信息科技伦理与道德2:研究方法
为什么你能判断一项技术的应用是否道德?这一行为是否帮助/侵害了他人?这一行为是否符合/违背了公序良俗?这一行为是否遵守/违背了法律?这一行为只单纯能影响别人是否喜欢你?……信息科技伦理谈的是什么?
2025-01-02 10:42:46
1883
原创 信息科技伦理与道德1:绪论
DeepFake 深伪技术:通过神经网络技术进行大样本学习,将个人的声音、面部表情及身体动作拼接合成图片、视频、音频内容。
2025-01-01 20:25:11
664
原创 计算机伦理与职业规范2:伦理与道德
在西方文化中,“伦理学”一词源出希腊文“ethos”,意为风俗、习惯 、性格等。在中国文化中,伦理一词最早出现于《乐纪》:“乐者,通伦理者也。我国古代思想家们对伦理学都十分重视,“三纲五常”就是基于伦理学产生的。最开始对伦理学的应用主要体现在对于家庭长幼辈分的界定,后又延伸至社会关系的界定。
2024-12-27 11:41:24
404
原创 计算机伦理与职业规范1:计算的社会背景
面对全球冲突,一帮数学家开始致力于尽可能快地解决复杂数学问题。冲突双方都会通过无线电发送命令和战略信息,而这些信号也可能被敌方截获。为了防止信息泄露,军方会对信号进行加密,而能否破解敌方编码关乎着成百上千人的性命,自动化破解过程显然大有裨益。
2024-12-26 11:07:52
996
原创 张恒汝的个人简介
张恒汝,男,九三学社社员,博士,教授,硕士生导师,机器学习研究中心副主任,四川省学术和技术带头人后备人选,中国科协科技人才奖项评审专家,四川省网络安全与信息化技术专家库成员,CCF、ACM会员,CAAI粒计算与知识发现专委会委员。主要从事机器学习及其应用相关教学和科研工作,如推荐系统、人工智能安全、能源与人工智能等。主持和参与国家自然科学基金、国家科技重大专项、四川省科技厅项目、四川省教育厅重点项目等科研项目10余项。
2024-09-18 14:25:28
2051
原创 数字化转型练习题-2
29、深度学习中的神经网络层数越多,其模型的复杂度越高,但也会引发的问题是__________。23、对于一个已有数据集,增加其数据的个数,使其有更多的多样性的操作是()。25、在卷积神经网络中,能让隐层的神经元以一定的概率不被激活的方法是()。4、遵循“大平台、微服务、轻应用”的设计理念,构建工业应用( )群。C、完全代替人 D、 模拟、延伸和扩展人的智能。A、智能化、低端化 、绿色化 B、智能化、高端化、绿色化。C、智能化、通俗化、绿色化 D、高端化、绿色化、无人化。
2024-07-31 12:03:58
1413
原创 智慧交通相关资源
https://aiarena.tencent.com/aiarena/zh/match/open-competition-2024/open-competition-2024-3https://cityflow.readthedocs.io/en/latest/flow.htmlhttps://github.com/gjzheng93/frap-pubhttps://gitcode.com/wingsweihua/IntelliLight/overview?utm_source=csdn_githu
2024-07-14 10:40:49
233
原创 Linux编程基础 8.4:epoll工作模式
poll机制的工作原理及流程与select类似,但poll可监控的进程数量不受select中第二个因素——fd_set集合容量的限制,用户可在程序中自行设置被监测的文件描述符集的容量,当然poll在阻塞模式下也采用轮询的方式监测文件描述符集,因此应合理设置poll中监控进程的数量。
2024-05-31 11:15:38
543
原创 论文笔记:液体管道泄漏综合检测与定位模型
许多液体,如水和油,都是通过管道运输的,在管道中可能发生泄漏,造成能源浪费、环境污染和对人类健康的威胁。本文描述了一种集成的泄漏检测和定位模型,该模型可用于液体管道中的背景泄漏(现有技术手段和措施未能检测到的管网漏点的漏失量)甚至微泄漏。该模型包括动态监测模块(DMM)和静态测试模块(STM)。利用压力波的振幅传播和衰减模型,DMM可以检测到较大的背景泄漏。基于压力损失模型的STM可以检测微泄漏,是对DMM的有效补偿。为了验证所提出的模型,在实验室规模和现场进行了实验,并实施了现场应用。
2024-03-18 17:17:00
2385
2
原创 图机器学习(3)-面向节点的人工特征工程
地铁导航图计算机是看不懂这些图,计算机只能看懂向量、矩阵。传统图机器学习只讨论连接特征。构造一个新的特征x1x2,有利于分开这种数据。人需要去翻译这些计算机不懂的特征,变成计算机可以懂的向量、矩阵。
2024-03-08 16:00:03
614
1
原创 推荐系统的三个方面
推荐系统面临的问题主要有:冷启动问题、样本分布不平衡问题(有些用户交互得多,有些用户交互得少)、隐私保护问题、可解释性问题(是因为什么喜欢或者说因为哪一个方面喜欢)
2024-01-25 17:11:02
533
原创 机器学习的三个方面
第三、知识的质量如何,如果是垃圾,得到的模型也很差,这个涉及到数据质量评估、异常点检测、数据中毒攻击及防范等。有了数据,有了模型后,如何来训练模型,方式就非常多,有课程学习、迁移学习、强化学习、联邦学习、小样本学习等。选取什么样的模型,使用什么样的神经元来构造大脑,通常这个部分都是在已有的模型上进行修改,重构新的模型太难。第二、知识是否有体系,也就是说样本之间是否存在某种关联、差异等,这个涉及到样本选择等问题;包括数据采集、增强和质量管理,相当于给人工智能模型学习什么样的知识。第一、什么专业的知识;
2024-01-05 09:30:21
991
1
原创 论文笔记:Multi-Concept Customization of Text-to-Image Diffusion
论文:Multi-Concept Customization of Text-to-Image Diffusion当生成模型生成从大规模数据库中学习的概念的高质量图像时,用户通常希望合成他们自己的概念的实例(例如,他们的家庭,宠物或物品)。我们能教一个模型快速掌握一个新概念吗,给出几个例子?此外,我们能否将多个新概念组合在一起?我们提出自定义扩散,一种有效的方法来增强现有的文本到图像模型。我们发现,仅优化文本到图像调节机制中的几个参数就足以强大地表示新概念,同时实现快速调优。
2023-10-20 09:52:47
1376
原创 人工智能安全-2-非平衡数据处理(2)
代价敏感:设置损失函数的权重,使得少数类判别错误的损失大于多数类判别错误的损失;单类分类器方法:仅对少数类进行训练,例如运用SVM算法;集成学习方法:即多个分类器,然后利用投票或者组合得到结果。
2023-09-21 10:27:01
670
Deep Bilateral Learning for Real-Time Image Enhancement文献调研.docx
2021-08-01
EnlightenGAN-Deep Light Enhancement without Paired Supervision文献调研.docx
2021-08-01
Multi-Stage Progressive Image Restoration文献调研.docx
2021-08-01
Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement文献调研.docx
2021-08-01
Underexposed Photo Enhancement using Deep Illumination Estimation文献调研.docx
2021-08-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人