给定一个字符串 (s) 和一个字符模式 §。实现支持 ‘.’ 和 ‘*’ 的正则表达式匹配。
‘.’ 匹配任意单个字符。
‘*’ 匹配零个或多个前面的元素。
匹配应该覆盖整个字符串 (s) ,而不是部分字符串。
说明:
s 可能为空,且只包含从 a-z 的小写字母。
p 可能为空,且只包含从 a-z 的小写字母,以及字符 . 和 *。
示例 1:
输入:
s = "aa"
p = "a"
输出: false
解释: "a" 无法匹配 "aa" 整个字符串。
示例 2:
输入:
s = "aa"
p = "a*"
输出: true
解释: '*' 代表可匹配零个或多个前面的元素, 即可以匹配 'a' 。因此, 重复 'a' 一次, 字符串可变为 "aa"。
示例 3:
输入:
s = "ab"
p = ".*"
输出: true
解释: ".*" 表示可匹配零个或多个('*')任意字符('.')。
示例 4:
输入:
s = "aab"
p = "c*a*b"
输出: true
解释: 'c' 可以不被重复, 'a' 可以被重复一次。因此可以匹配字符串 "aab"。
示例 5:
输入:
s = "mississippi"
p = "mis*is*p*."
输出: false
思路分析:这种字符串的匹配题,比较常规的解题方法有两种,第一种当然是递归,写好一遍所有的情况,然后递归下去就可以,第二种方法是非递归,直接在循环中处理每一次的匹配,对于多种情况话进行尝试,不行的话有滚回去再次尝试,有点类似回溯法。
首先介绍递归算法实现
class Solution {
public:
bool isMatch(string s, int sNextIndex, string p, int pNextIndex){
int sLegnth = s.size();
int pLength = p.size();
if (sNextIndex == sLegnth && pNextIndex == pLength){
return true;
}
else if (sNextIndex < sLegnth && pNextIndex < pLength){
if (p[pNextIndex] == s[sNextIndex] || p[pNextIndex] == '.'){
//p串匹配成功或者遇到点号
if (pNextIndex + 1 < pLength && p[pNextIndex + 1] == '*'){
//如果后一个字符是*号,可能p串当前的字符不需要使用
return isMatch(s, sNextIndex, p, pNextIndex + 2) || isMatch(s, sNextIndex + 1, p, pNextIndex + 1);
}
return isMatch(s, sNextIndex + 1, p, pNextIndex + 1);
}
else if (p[pNextIndex] == '*'){
//p串遇到通配符
if (p[pNextIndex - 1] == s[sNextIndex] || p[pNextIndex - 1] == '.'){
//如果p串的pNextIndex前一个字符与sNextIndex对应的字符相同或者出现点号,将*进行匹配,或者不匹配也行
return isMatch(s, sNextIndex + 1, p, pNextIndex) || isMatch(s, sNextIndex + 1, p, pNextIndex + 1) || isMatch</