LeetCode 修剪二叉搜索树(递归)

本文介绍了一种算法,用于修剪二叉搜索树,确保所有节点值位于指定的最小和最大边界之间。通过递归方法,该算法可以高效地调整树结构,保留目标范围内的节点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>=L) 。你可能需要改变树的根节点,所以结果应当返回修剪好的二叉搜索树的新的根节点。

示例 1:

输入: 
    1
   / \
  0   2

  L = 1
  R = 2
输出: 
    1
      \
       2

示例 2:

输入: 
    3
   / \
  0   4
   \
    2
   /
  1
  L = 1
  R = 3
输出: 
      3
     / 
   2   
  /
 1

思路分析: 这道题与 LeetCode 删除二叉搜索树中的节点 非常类似,蛋试相比之下简单很多。

首先,我们知道二叉搜索树的定义是:左子树的节点元素值 < root的值 < 右子树的节点元素值,并且左子树、右子树同样满足这个条件(递归定义)。

算法描述:

如果root的值 < L,说明,root和root->left都需要删除(因为左子树的节点元素值 < root的值 < L)
如果R < root的值,说明,root和root->right都需要删除(因为R < root的值 < 右子树的节点元素值)
否则,我们递归修剪root->left、root->right,然后放到root的左子树、右子树

递归算法一般比较简洁,蛋试理解可能比较困难。我们不要深究每一步是怎么实现的,我们只要知道如果root的值不需要删减,就递归删减root->left,root->right,否则会越想越复杂。

我发现居然不能回收空间,一回收就报错。。。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
	TreeNode* trimBST(TreeNode* root, int L, int R) {
		if (root == NULL) {
			return NULL;
		}
		if (root->val < L) {
            //左子树的节点元素值 < root的值 < L,只保留右子树
			TreeNode *newRoot = root->right;
			//root->right = NULL;
			//myDelTree(root);
			return trimBST(newRoot, L, R);
		}
		else if (root->val > R) {
            //R < root的值 < 右子树的节点元素值,值保留左子树
			TreeNode* newRoot = root->left;
			//root->left = NULL;
			//myDelTree(root);
			return trimBST(newRoot, L, R);
		}
		else {
            //否则,递归修剪左子树、右子树,保留根节点
			root->left = trimBST(root->left, L, R);
			root->right = trimBST(root->right, L, R);
			return root;
		}
	}
    //删除以root为根的树
	void myDelTree(TreeNode* root) {
		if (root == NULL) {
			return;
		}
		myDelTree(root->left);
		myDelTree(root->right);
		delete root;
	}
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值