LeetCode 最长递增子序列的个数(动态规划)

给定一个未排序的整数数组,使用动态规划求解最长递增子序列的个数。示例和思路分析表明,需要计算以每个元素结尾的最长递增子序列的长度及其出现次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个未排序的整数数组,找到最长递增子序列的个数。

示例 1:

输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。

示例 2:

输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。

注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数。
思路分析: 递增子序列的问题是经典的动态规划问题,这道题稍微增加了一点点难度,需要你求出最长递增子序列的个数。
我们稍微改进一下dp数组,
vector<pair<int, int>> dp 其中dp[i]中的{first, second}表示的以nums[i]结尾的最长递增子序列长度为first,以及个数second
比如输入[1,3,3,4,7],比如以4结尾的最长递增子序列长度first = 3,个数secod = 2({1,3(第一个),4},{1,3(第二个),4})

class Solution {
   
   
public:
	int findNumberOfLIS(vector<int>& nums) {
   
   
        //maxLen是已经找到的最长递增子序列长度,resCnt是最长递增子序列的个数
		int maxLen = 1, resCnt = 1, numsSize = nums.size();
		if (numsSize < 2) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值