给定一个未排序的整数数组,找到最长递增子序列的个数。
示例 1:
输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。
示例 2:
输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。
注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数。
思路分析: 递增子序列的问题是经典的动态规划问题,这道题稍微增加了一点点难度,需要你求出最长递增子序列的个数。
我们稍微改进一下dp数组,
vector<pair<int, int>> dp 其中dp[i]中的{first, second}表示的以nums[i]结尾的最长递增子序列长度为first,以及个数second
比如输入[1,3,3,4,7],比如以4结尾的最长递增子序列长度first = 3,个数secod = 2({1,3(第一个),4},{1,3(第二个),4})
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
//maxLen是已经找到的最长递增子序列长度,resCnt是最长递增子序列的个数
int maxLen = 1, resCnt = 1, numsSize = nums.size();
if (numsSize < 2)