第 i 个人的体重为 people[i],每艘船可以承载的最大重量为 limit。
每艘船最多可同时载两人,但条件是这些人的重量之和最多为 limit。
返回载到每一个人所需的最小船数。(保证每个人都能被船载)。
示例 1:
输入:people = [1,2], limit = 3
输出:1
解释:1 艘船载 (1, 2)
示例 2:
输入:people = [3,2,2,1], limit = 3
输出:3
解释:3 艘船分别载 (1, 2), (2) 和 (3)
示例 3:
输入:people = [3,5,3,4], limit = 5
输出:4
解释:4 艘船分别载 (3), (3), (4), (5)
提示:
1 <= people.length <= 50000
1 <= people[i] <= limit <= 30000
思路分析:\color{blue}思路分析:思路分析:典型的贪心策略题。
如果要使救生艇的数量最少,则我们需要将放在每一条救生艇的人的总重量达到最大。由于人不可切割,每条救生艇最多也只能放置两个人,所以我们只能将每条救生艇在不超过limit的条件下,尽可能放置两个人。
现在我们来想一想如何对人进行分组,如果某条救生艇放置了两个人A 、B,并且A + B <= limit,则必定会出现A <= B(或者B <= A),现在我们只靠考虑A为较轻者。当A确定的情况下,这条救生艇还能放置的最大重量为limit - A,而贪心的人当然是想着在剩余的人群中尽可能找一个最接近且不大于limit - A的人。这样就能充分利用每条救生艇的有效载荷。
此时如果人群众找到了一个人B <= limit - A,则将这个人与A搭配,如果没有找到,则说明A必须单独坐一条救生艇。
class Solution {
public:
int numRescueBoats(vector<int>& people, int limit) {
int count = 0;//救生艇的总数量
multiset<int> peopleSet(people.begin(), people.end());//转换成set,方便擦除(自带升序排序)
while (!peopleSet.empty()){
//每次从最小的元素开始组合,令A = *peopleSet.begin(),寻找B,使得A + B <= limit
if ((*peopleSet.begin()) * 2 > limit){
//如果A的重量超过了limit一般,并且由于set是递增的,则当前set中的人不可能再搭配组合了,只能每个人单独乘一艘
return count + peopleSet.size();
}
//在set中搜索第一个大于limit - A的位置
auto it = peopleSet.upper_bound(limit - *peopleSet.begin());
//--it则是最大的一个不大于limit - A的位置
if (--it == peopleSet.begin()){
//当A只能找到自己,并且由于set是递增的,则当前set中的人不可能再搭配组合了,只能每个人单独乘一艘
return count + peopleSet.size();
}
count += 1;//新增一条救生艇,放置A、B
//将A 、B从set中移除
peopleSet.erase(it);
peopleSet.erase(peopleSet.begin());
}
return count;
}
};
上面的算法涉及到大量的erase操作,非常耗时,下面将使用双指针技术,优化算法。
class Solution {
public:
int numRescueBoats(vector<int>& people, int limit) {
int count = people.size();//救生艇的总数量,初始化所有人都单独乘一艘救生艇
sort(people.begin(), people.end());//升序排序
int left = 0, right = people.size() - 1;//left = A, right = B
//每次尝试将A、B组合,如果不能组合则左移right
while (left < right){
if (people[left] + people[right] <= limit){
//此时A、B组合乘坐一艘救生艇
++left;
count -= 1;//需要的救生艇数自减
}
--right;
}
return count;
}
};
第二种方法有点妙,可能有些道友觉得当找到了left的组合伙伴后需要重置right = people.size() - 1,去寻找下一个left的组合伙伴,起始这是没有必要的。people[left]的伙伴people[right]
必定会大于people[left + 1]的伙伴people[right ’]
,因为people[left] < people[left + 1]
,并且people[left] + people[right] <= limit, people[left + 1] + people[right ’] <= limit
所以people[left + 1]的伙伴只可能存在right之前。
同时还说明了,如果people[left]找到的伙伴 people[right]是自身,也就是left = right,则[left, people.size() - 1]肯定都找不到伙伴。