用CloudCompare实现两帧点云数据的精准对齐
用CloudCompare实现两帧点云数据的精准对齐
一、背景及原理
1、什么是点云对齐?
点云对齐(点云配准)是将从不同位置、角度采集的多组点云数据,通过旋转和平移变换,统一到同一个坐标系下的过程。这就像是将多张从不同角度拍摄的照片拼接成一张全景图,只不过这里处理的是三维空间中的点数据。
2、为什么需要点云对齐?
当使用激光雷达扫描大型场景或物体时,通常需要从多个位置进行扫描,因为单个视角无法捕捉到全部细节。将这些不同位置的扫描数据融合在一起,才能获得完整的三维模型。在实际应用中,点云对齐广泛应用于自动驾驶、三维建模、文物保护、工业检测等领域。
3、基本原理:ICP算法
本文使用的ICP(Iterative Closest Point,迭代最近点)算法是最常用的点云配准算法之一。它的基本原理是:
- 在两帧点云中寻找最近的点对
- 计算这些点对之间的最优变换矩阵(旋转和平移)
- 应用这个变换到其中一帧点云
- 迭代上述过程直到满足收敛条件
下图展示了两个激光雷达的安装位置关系,我们需要将它们采集的数据对齐融合:
- 雷达安装位置
二、对齐效果对比
1、未对齐前的点云
如下图所示,左雷达的朝向不对