CEEMDAN-SSA-MVMD-NRBO-Transformer完全自适应噪声集合经验模态分解+麻雀算法优化多元变分模态分解+牛顿拉夫逊算法优化编码器多变量时序预测

多维时序 | CEEMDAN-SSA-MVMD-NRBO-Transformer完全自适应噪声集合经验模态分解+麻雀算法优化多元变分模态分解+牛顿拉夫逊算法优化编码器多变量时序预测

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

二次分解+双重优化+深度学习!CEEMDAN-SSA-MVMD-NRBO-Transformer多变量时序预测,普通的多变量时序已经用腻了,审稿人也看烦了,本期推出一期高创新模型,其中,CEEMDAN为完全自适应噪声集合经验模态分解,SSA-MVMD为麻雀算法优化多元变分模态分解,NRBO-Transformer为牛顿拉夫逊算法优化编码器。模型支撑风电预测、光伏预测、交通预测、股票预测等领域,先用先发,不要犹豫!

代码主要功能
第一段代码 (main1_CEEMDAN_Kmeans_SSA_MVMD.m)
信号分解与重构:

使用 CEEMDAN(完全自适应噪声集合经验模态分解)将原始光伏信号分解为多组IMF分量。

基于 样本熵 和 K-means聚类(分3类)将IMF分量合并为高频、中频、低频三类。

对高频分量使用 SSA算法优化MVMD参数(平滑参数α、模态数K),再用 MVMD 分解高频信号。

合并分解后的子分量(MVMD结果 + 中/低频分量),保存为 Fj_data.mat。

可视化:绘制原始信号、IMF分量、聚类结果、频谱图、边际谱图(2D/3D)及收敛曲线。

第二段代码 (main2_CEEMDAN_SSA_MVMD_NRBO_Transformer.m)
预测建模:

加载 Fj_data.mat 的分量数据。

使用 NRBO算法优化Transformer超参数(学习率、注意力头数、L2正则化系数)。

对每个分量分别构建 Transformer模型 进行预测,叠加各分量结果得到最终预测值。

性能评估:计算RMSE、R²、MAE、MAPE等指标,绘制误差直方图、回归图、雷达图、罗盘图等可视化结果。

  1. 逻辑关联
    数据流:
    main1 输出分解后的分量数据 Fj_data.mat → main2 加载该数据作为输入进行预测。

算法流程:
CEEMDAN → K-means聚类 → SSA优化MVMD(main1) → NRBO优化Transformer → 分量预测 → 结果融合(main2)。

  1. 算法步骤
    第一段代码步骤
    预处理:导入数据(光伏数据最后一列),设置采样参数。

CEEMDAN分解:

参数:Nstd=0.2, NR=500, MaxIter=5000。

聚类:

计算各IMF的样本熵 → K-means聚类(分3类)→ 合并同类分量。

SSA优化MVMD:

优化目标:最小化MVMD代价函数(CostMVMD)。

参数范围:α ∈ [0,5000], K ∈ [1,10]。

MVMD分解:使用优化后的参数分解高频分量。

保存与可视化:合并分量并绘图。

第二段代码步骤
数据划分:

构造时间序列样本(历史步长 kim=2, 预测步长 zim=1)。

划分训练集(70%)和测试集。

NRBO优化Transformer:

优化参数:学习率、注意力头数、L2正则化系数。

搜索空间:lr ∈ [1e-3,1e-2], heads ∈ [2,8], L2 ∈ [1e-4,0.1]。

Transformer建模:

结构:输入层 → 位置编码 → 自注意力层(2层)→ 全连接层 → 回归层。

预测与评估:

各分量独立预测 → 结果叠加 → 计算误差指标 → 可视化。

  1. 技术路线
    信号处理:CEEMDAN降噪 → 样本熵特征提取 → K-means分量分类 → MVMD精细分解。

优化算法:SSA优化MVMD参数 → NRBO优化Transformer超参数。

深度学习:Transformer模型处理时间序列依赖关系。

模型分析:频谱分析、边际谱、误差分解雷达图。

在这里插入图片描述

程序设计

完整代码获取私信回复:CEEMDAN-SSA-MVMD-NRBO-Transformer多变量时序预测(Matlab完整源码和数据)


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据

num_samples = length(result);  % 样本个数
or_dim = size(result, 2);      % 原始特征+输出数目


%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值