MATLAB基于三角直觉模糊云模型的多属性评价方法
1. 模型核心思想与优势
-
三角直觉模糊数(Triangular Intuitionistic Fuzzy Number, TIFN):
- 表示为
(a, b, c; u, v)
。(a, b, c)
是一个三角模糊数,代表属性的核心取值范围。u
是隶属度,表示支持该取值的程度。v
是非隶属度,表示反对该取值的程度。- 且满足
u + v ≤ 1
。
- 优势:比传统模糊数能更细腻地刻画专家的评价信息,因为它同时包含了支持、反对、犹豫度(π=1-u-v) 三个方面的信息,更能反映人类判断的复杂性。
- 表示为
-
云模型(Cloud Model):
- 用三个数字特征
(Ex, En, He)
表示一个概念。Ex
(期望):概念在论域中的中心值。En
(熵):概念的不确定性和模糊性。He
(超熵):熵的不确定性,即云层的厚度。
- 优势:能将定性概念与定量值进行自然转换,并能同时处理概念的模糊性和随机性。
- 用三个数字特征
-
融合思路:
- 将TIFN丰富的语义信息(支持、反对、犹豫)转换并注入到云模型的三个数字特征中。TIFN负责精确捕捉专家意见的模糊性与犹豫性,云模型负责将这些信息以带有概率分布的形式表现出来并进行聚合计算。
- 最终目标:将多个专家基于TIFN对各个属性的评价,综合转换成一个能够代表整体评价的“综合云”,并通过“云相似度”比较来对方案进行排序或择优。
2. 模型构建步骤
假设有 m
个待评价方案 (A1, A2, ..., Am)
,n
个评价属性 (C1, C2, ..., Cn)
,k
位专家 (D1, D2, ..., Dk)
参与评价。
步骤一:建立三角直觉模糊评价矩阵
- 专家评价:每位专家
D_t
针对方案A_i
在属性C_j
上的表现,给出一个三角直觉模糊数评价X_{ij}^t = (a_{ij}^t, b_{ij}^t, c_{ij}^t; u_{ij}^t, v_{ij}^t)
。 - 构建矩阵:收集所有专家的评价,形成
k
个三角直觉模糊决策矩阵R^t = [X_{ij}^t]_{m×n}
。
步骤二:确定属性权重
属性权重 W = (w1, w2, ..., wn)
可能完全未知或部分已知。可以采用以下方法确定:
- 基于熵权法:利用直觉模糊熵的概念,计算每个属性下评价信息的离散程度,离散程度越大(熵越小),该属性权重越大。
- 基于偏差最大化法:寻找一组权重,使得所有方案在所有属性下的总差异最大。
- 主观赋权法:如果专家能给出权重的TIFN判断,可以借鉴AHP扩展的方法。
- 组合赋权法:如同前一个模型,可以结合主客观方法。
步骤三:聚合专家意见(综合群体评价)
将 k
位专家对同一方案 A_i
在同一属性 C_j
上的评价 X_{ij}^1, X_{ij}^2, ..., X_{ij}^k
聚合为一个综合的TIFN值 X_{ij}
。
通常使用三角直觉模糊加权平均算子(TIFWA):
X_{ij} = TIFWA(X_{ij}^1, X_{ij}^2, ..., X_{ij}^k) = (1 - ∏_{t=1}^k (1 - u_{ij}^t)^{λ_t}, ∏_{t=1}^k (v_{ij}^t)^{λ_t})
其中 λ_t
是专家 D_t
的权重(可以根据专家权威性、熟悉度等确定),计算过程也涉及对三角模糊数部分 (a, b, c)
的加权平均。
最终得到一个综合的三角直觉模糊决策矩阵 R = [X_{ij}]_{m×n}
,其中 X_{ij} = (a_{ij}, b_{ij}, c_{ij}; u_{ij}, v_{ij})
。
步骤四:将TIFN转换为综合云模型(核心步骤)
这是该方法最关键的一步。需要构建一个映射函数,将聚合后的TIFN X_{ij} = (a_{ij}, b_{ij}, c_{ij}; u_{ij}, v_{ij})
转换为一个云模型 Y_{ij} = (Ex_{ij}, En_{ij}, He_{ij})
。
一种常见的转换公式如下:
-
计算期望(Ex):代表评价的核心值。
Ex_{ij} = (a_{ij} + 2*b_{ij} + c_{ij}) / 4
(这是三角模糊数核心值的常用计算方法) -
计算熵(En):代表评价的模糊性和不确定性。隶属度
u
越高、非隶属度v
越低,不确定性越小(熵越小)。
En_{ij} = [((c_{ij} - a_{ij}) + (b_{ij} - a_{ij})(u_{ij} - v_{ij})] / 6
(c_{ij} - a_{ij})
反映了三角模糊数本身的宽度,即固有不确定性。(u_{ij} - v_{ij})
反映了专家的确信程度。确信度越高(u-v
越大),对固有不确定性的折扣越大,最终熵越小。
-
计算超熵(He):代表熵的 uncertainty,即专家群体的分歧程度。犹豫度
π = 1 - u - v
越大,超熵越大。
He_{ij} = (π_{ij} * (c_{ij} - a_{ij})) / 6 = ((1 - u_{ij} - v_{ij}) * (c_{ij} - a_{ij})) / 6
- 犹豫度
π
直接衡量了专家群体的分歧,分歧越大,云层越厚。
- 犹豫度
通过以上转换,我们将富含语义的TIFN信息融入了云模型的数字特征中。
步骤五:计算加权综合云
-
属性加权:将每个方案
A_i
在不同属性C_j
下的云模型Y_{ij}
按属性权重w_j
进行聚合,得到方案A_i
的整体评价云Y_i = (Ex_i, En_i, He_i)
。
云模型的加权聚合公式(对于加法运算):Ex_i = Σ_{j=1}^n (w_j * Ex_{ij})
En_i = Σ_{j=1}^n (w_j * En_{ij})
He_i = Σ_{j=1}^n (w_j * He_{ij})
-
生成综合云:
Y_i
就是代表方案A_i
最终评价结果的“综合云”。
步骤六:方案排序与择优
将所有方案的综合云 Y_i
与一个“理想等级云”或彼此之间进行比较排序。常用方法:
-
云相似度比较:
- 计算每个方案的综合云
Y_i
与一个 predefined “正理想云”Y*
(例如,代表“最优”等级的云) 的相似度。 - 相似度计算公式种类繁多,一种常见的是基于云滴分布的期望曲线函数面积重叠度来计算。
- 规则:与正理想云相似度越高的方案,排名越靠前。
- 计算每个方案的综合云
-
云数字特征排序法(简化):
- 在精度要求不极端高的情况下,可以定义一个得分函数。
- 得分函数:
S(Y_i) = Ex_i - k * En_i
(k
是一个风险偏好系数,k
越大说明决策者越厌恶不确定性) - 规则:
S(Y_i)
值越大的方案越优。这种方法更直观,但损失了一些随机性信息。
3. 模型优势总结
- 信息表达丰富:TIFN完整保留了专家评价中的支持、反对和犹豫信息,避免了信息丢失。
- 不确定性处理能力强:云模型将模糊性(En)和随机性(He)分离开并定量表示,对不确定性的刻画更深一层。
- 评价结果直观:最终结果是一个“云”,可以可视化,既能看核心趋势(Ex),也能看风险大小(En, He)。
- 稳健性好:由于引入了随机性,通过多次云滴生成可以模拟评价结果的可能分布,使得决策更加稳健。
4. 应用场景
该方法适用于任何具有高度不确定性、需要集成多位专家意见的复杂评价决策问题,例如:
- 重大投资项目风险评估
- 高新技术项目选择
- 供应链合作伙伴综合评价
- 智慧城市发展水平评估
- 突发事件应急方案择优