AI 图像识别的测试

本文探讨了AI图像识别测试,包括人脸识别与AI的关系、图像识别的测试方法,以及人脸识别与普通图像识别的差异。测试人员需要关注数据收集、特征提取和模型评估等方面,同时适应AI测试与传统测试的不同点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随着AI 的浪潮发展,AI 的应用场景越来越广泛,其中计算机视觉更是运用到我们生活中的方方面面。
作为一个测试人员,需要紧跟上 AI 的步伐,快速从传统业务测试,转型到 AI 的测试上来。而人脸识别作为机器视觉应用场景里最普及常见的一环,因此这一篇结合AI 的架构和核心,以及人脸识别来讲一讲,AI 怎么测试,以及 AI 测试与传统测试的区别和共同点。

 

 

人脸识别和 AI的关系

先了解 AI两个基本概念。

a) 计算机视觉

 

也称为机器视觉,是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。
最好理解的场景,比如拍一个花的照片,通过机器学习自动告知用户这是什么花。拍一个店铺的照片,机器学习自动分析出店铺的名字,以及店铺的位置。

 

b) 生物识别

通过计算机,与光学、声学、生物传感器、统计学的概念手段结合,利用人体固有的生理特性和行为特征进行个人身份的鉴定。比如通过人的指纹,和数据库录入的指纹比较,判断是否是同一个人。

机器视觉和生物识别都属于AI 的应用领域,机器视觉和生物识别的本质,都在于对于图像图像的识别和比对。人脸识别,则是将机器视觉与生物识别结合,对人类的面部特征应用计算机视觉的一个典型场景

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值