证明 指数分布 的期望和方差

指数分布

指数分布(Exponential Distribution)是一种常见的连续型概率分布,通常用于描述事件之间的时间间隔。假设随机变量 ( X ) 服从参数为 ( \lambda ) 的指数分布,记作 ( X \sim \text{Exp}(\lambda) )。

指数分布的概率密度函数(PDF)为:

f(x)={ λe−λxx≥00x<0 f(x) = \begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases} f(x)={ λeλx0x0x<0

期望值

期望值(Expectation)表示随机变量的平均值。对于指数分布 ( X ),其期望值 ( \mathbb{E}(X) ) 定义为:

E(X)=∫0∞xf(x) dx \mathbb{E}(X) = \int_{0}^{\infty} x f(x) \, dx E(X)=0xf(x)dx

代入指数分布的概率密度函数:

E(X)=∫0∞xλe−λx dx \mathbb{E}(X) = \int_{0}^{\infty} x \lambda e^{-\lambda x} \, dx E(X)=0xλeλxdx

将 (\lambda) 提取出来:

E(X)=λ∫0∞xe−λx dx \mathbb{E}(X) = \lambda \int_{0}^{\infty} x e^{-\lambda x} \, dx E(X)=λ0xeλxdx

为了计算这个积分,我们使用分部积分法。设:

u=x,dv=e−λx dx u = x, \quad dv = e^{-\lambda x} \, dx u=x,dv=eλxdx

则:

du=dx,v=−1λe−λx du = dx, \quad v = -\frac{1}{\lambda} e^{-\lambda x} du=dx,v=λ1eλx

应用分部积分公式 ( \int u , dv = uv - \int v , du ):

∫0∞xe−λx dx=−xλe−λx∣0∞+∫0∞1λe−λx dx \int_{0}^{\infty} x e^{-\lambda x} \, dx = \left. -\frac{x}{\lambda} e^{-\lambda x} \right|_{0}^{\infty} + \int_{0}^{\infty} \frac{1}{\lambda} e^{-\lambda x} \, dx 0xeλxdx=λxeλx 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值