2.3 极限的性质、判定、计算、以及与无穷小量、无穷大量的关系

1. 极限的性质

  • 有界性:

    • 数列: 如果数列 {x_n} 收敛,那么数列 {x_n} 一定有界。
    • 函数: 如果 lim (x→x₀) f(x) 存在,则 f(x)x₀ 的某个去心邻域内有界(局部有界)。 注意这里强调的是 去心 邻域, 即不包含 x₀ 本身。
      在这里插入图片描述
  • 保号性(重点!)注意上下两式 带不带等号 有讲究! :

    • 数列保极限: 如果存在 N > 0,当 n > N 时,x_n ≥ 0 (或 x_n ≤ 0),那么 lim (n→∞) x_n = A ≥ 0 (或 A ≤ 0)。
    • 极限保数列: 如果 lim (n→∞) x_n = AA > 0 (或 A < 0),那么存在 N > 0,当 n > N 时,x_n > 0 (或 x_n < 0)。
    • 函数保极限和极限保函数性质与数列类似。
      在这里插入图片描述

2. 极限存在准则

  • ① 夹逼定理: 【适用于求 n 项和的极限】
  • ② 单调有界准则:

3. 无穷小量

  • 概念:x→x₀x→∞ 时,极限为 0 的函数或数列称为无穷小量。

  • 比较(重点!):α(x)→0, β(x)→0

    • 高阶: lim [α(x) / β(x)] = 0,记作 α(x) = o(β(x))
    • 低阶: lim [α(x) / β(x)] = ∞
    • 同阶: lim [α(x) / β(x)] = C ≠ 0
    • 等价: lim [α(x) / β(x)] = 1,记作 α(x) ~ β(x)
    • 引入"阶"的概念: 若 lim α(x) / [β(x)]^k = C ≠ 0, 则称 α(x)β(x) 的k阶无穷小.
      在这里插入图片描述
  • 常用等价无穷小(x→0 时):

    • sin x ~ x
    • tan x ~ x
    • arcsin x ~ x
    • arctan x ~ x
    • ln(1+x) ~ x
    • e^x - 1 ~ x
    • 1 - cos x ~ (1/2)x²
    • (1+x)^α - 1 ~ αx
    • 以及这些公式的变形
  • 性质:

    • 有限个无穷小量的和、积仍是无穷小量。
    • 无穷小量与有界量的乘积仍是无穷小量。
  • 无穷小替换: 在求极限的乘除运算中,可以用等价无穷小量替换。但加减运算中一般不能替换。

4. 无穷大量

  • 概念: 绝对值无限增大的变量(趋向于 ∞)。

  • 性质:

    • 两个无穷大量的积仍是无穷大量。
    • 无穷大量与有界变量的和仍是无穷大量。
  • 与无界变量的关系: 无穷大量一定是无界变量,但无界变量不一定是无穷大量。

    • 例子: n为奇数时,x_n = n; n为偶数时, x_n = 0。
  • 与无穷小量的关系: 在同一极限过程中,如果 f(x) 是无穷大量,则 1/f(x) 是无穷小量;反之,如果 f(x) 是非零的无穷小量,则 1/f(x) 是无穷大量。

5. 常用的一些无穷大量的比较

  • 函数 (x→+∞): ln^α x << x^β << a^x (其中 α > 0, β > 0, a > 1)
  • 数列 (n→∞): ln^α n << n^β << a^n << n! << n^n (其中 α > 0, β > 0, a > 1)

6. 极限计算

  • 基本极限:
    • lim (x→0) sin(x)/x = 1
    • lim (x→∞) (1 + 1/x)^x = e
  • 利用等价无穷小替换
  • 有理运算法则 (分子分母分别求极限)
  • 洛必达法则
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值