数据清洗 (Data Cleaning)
为什么要数据清洗?:一颗老鼠屎也会破坏掉一整个大规模数据集
数据清洗要达到的目标是什么?:目标让模型更加泛化,让数据更体现其价值,最好能清洗出特征数据,从而让模型更精确
缩放特征值(Scaling)
将特征数据归一化处理,即转换数据集的数值范围(也叫标准化数据),
缩放是指将浮点特征值从自然范围(例如 100 到 900)转换为标准范围(例如 0 到 1 或 -1 到 +1)。
如果特征集包含多个特征,则缩放特征可以带来以下优势:
- 帮助梯度下降法更快速地收敛。
- 帮助避免“NaN 陷阱”。在这种陷阱中,模型中的一个数值变成
NaN(例如,当某个值在训练期间超出浮点精确率限制时),并且模型中的所有其他数值最终也会因数学运算而变成 NaN。 - 帮助模型为每个特征确定合适的权重。如果没有进行特征缩放,则模型会对范围较大的特征投入过多精力。
处理极端、离群/缺省值、去重等
处理错误数据、重复数据、残缺数据缺省补齐等
如何最大限度降低这些极端离群值的影响?