1、数据增强方式介绍
数据增强方式在方法上可以分为仿射变换、色彩变化、混合增强。仿射变换是指对图像进行缩放、旋转、平移和镜像等;色彩变化是指调节图像的明度、亮度和饱和度等(此外还可以使用各种滤波器对图像进行模糊、增强等操作);混合增强是指多图融合的增强手段,如mixup、cutmix等(此外还有cutup(又称random erasing))。
这些增强方式也可以分为同类增强和混合增强,同类增强是通过对一张图像进行变化,从而达到增强的目的;而混合增强是指对多张图像进行融合,其返回的标签独热码也按照相应的比例进行了相应的融合。本博文,主要介绍mixup和cutmix两种混合方式的实现,以两种方式实现,分别支持静态图与动态图,与ai框架无关,pytorch、tensorflow、paddle、keras都可以使用。
本博客只实现mixup与cutmix两种数据混合增强方式,Cutout方式的实现请参考python工具方法 21 应用于语义分割、图像分类、自动编码机的图像随机mask方法(Cutout方法、Random Erasing方法)_万里鹏程转瞬至的博客-CSDN博客
2、混合增强介绍
如:猫、狗、兔、鼠、牛五分类数据中,有以下两个数据:
Im1:猫,label1:[1,0,0,0,