python工具方法 26 应用于图像分类的mixup与cutmix数据混合增强方式实现

本文介绍了应用于图像分类的mixup和cutmix两种混合增强方法的实现,包括动态图和静态图模式。混合增强通过融合多张图像,调整标签比例,能够提升模型的分类性能。详细讲解了在数据加载到内存后进行增强的策略,并针对动态图和静态图(特别是静态图中的Keras)给出了实现代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、数据增强方式介绍

数据增强方式在方法上可以分为仿射变换、色彩变化、混合增强。仿射变换是指对图像进行缩放、旋转、平移和镜像等;色彩变化是指调节图像的明度、亮度和饱和度等(此外还可以使用各种滤波器对图像进行模糊、增强等操作);混合增强是指多图融合的增强手段,如mixup、cutmix等(此外还有cutup(又称random erasing))。

这些增强方式也可以分为同类增强和混合增强,同类增强是通过对一张图像进行变化,从而达到增强的目的;而混合增强是指对多张图像进行融合,其返回的标签独热码也按照相应的比例进行了相应的融合。本博文,主要介绍mixup和cutmix两种混合方式的实现,以两种方式实现,分别支持静态图与动态图,与ai框架无关,pytorch、tensorflow、paddle、keras都可以使用。

本博客只实现mixup与cutmix两种数据混合增强方式,Cutout方式的实现请参考python工具方法 21 应用于语义分割、图像分类、自动编码机的图像随机mask方法(Cutout方法、Random Erasing方法)_万里鹏程转瞬至的博客-CSDN博客

2、混合增强介绍

如:猫、狗、兔、鼠、牛五分类数据中,有以下两个数据:
        Im1:猫,label1:[1,0,0,0,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里鹏程转瞬至

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值