python工具方法 33 基于lossFusion类实现多个loss的集成

在深度学习中,混合loss常用于提升模型性能,尤其是在图像分类和语义分割任务中。然而,手动实现多loss加权混合会增加代码复杂性。本文提出lossFusion类,支持paddle、pytorch、tensorflow等框架,简化了计算单个或多个尺度输出的loss的代码,通过损失函数列表和权重列表实现灵活集成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在进行深度学习实践中,经常会使用到混合loss,无论是图像分类、还是语义分割。在图像分类中,经常将交叉熵与focal loss或者ghm loss进行混合;在语义分割中经常将交叉熵、dice loss、focal loss、iou loss、MS-SSIM loss等进行混合。使用混合loss通常能获得更为稳定的性能,且基于混合loss对评价指标(dice、iou)的优化,甚至能进一步提升性能。此外,如focal loss、ghm loss解决了样本不平衡的问题,也能提升性能。

1、现有问题

如果将模型训练代码中的单一loss更改为多个loss加权混合,对代码改动量较大。且,在语义分割模型中有着深度监督的概念(模型输出多个尺度的预测结果,如hrnet、unet3+等网络),这种多个out的输出,不能直接使用ce loss,dice loss等,需要对多个输出进行遍历,这使得计算loss的代码更为复杂了。
为了解决这一问题,博主提出了lossFusion类的使用(支持paddle、pytorch、tensorflow等框架)。通过使用该类,不管是单个loss,还是多个加权loss。不管模型输出的结果是一个还是多个尺度,都只需要相同的代码即可计算loss。

2、解决方案

具体实现代码如下所示,lossFusion类支持传入两个参数,分为为loss_list和loss_weights。loss_list为list对象,支持传入1个或多个loss;loss_weights也为list对象,支持传入每个loss对应的权重。博主通过改写__call__函数实现了直接通过对象名调用计算loss;且通过calc_loss函数,实现了对pred

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里鹏程转瞬至

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值