基于深度学习的电力系统暂态稳定评估与预防控制复现

基于深度学习的电力系统暂态稳定评估与预防控制复现

本文将复现论文《基于深度学习的电力系统暂态稳定评估与预防控制》中的关键技术,主要包括融合时空信息的暂态稳定评估模型ACNGAT和嵌入GKAN网络的帝企鹅优化算法AFO-GKAN。我们将使用Python语言实现这两个核心算法,并在IEEE 39节点系统上进行验证。

1. 数据准备与预处理

首先我们需要准备IEEE 39节点系统的仿真数据,包括电压幅值、相角等特征数据。

import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pk_xz123456

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值