基于深度学习的电力系统暂态稳定评估与预防控制复现
本文将复现论文《基于深度学习的电力系统暂态稳定评估与预防控制》中的关键技术,主要包括融合时空信息的暂态稳定评估模型ACNGAT和嵌入GKAN网络的帝企鹅优化算法AFO-GKAN。我们将使用Python语言实现这两个核心算法,并在IEEE 39节点系统上进行验证。
1. 数据准备与预处理
首先我们需要准备IEEE 39节点系统的仿真数据,包括电压幅值、相角等特征数据。
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import t