【计算智能实验】BP神经网络的Matlab实现

本文介绍了如何使用MATLAB实现BP神经网络,包括对曲线拟合的实验1和基于数据预测的实验2。实验比较了不同传递函数和训练函数对训练次数的影响,并展示了具体的实验结果及预测成绩。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简述BP神经网络的学习算法:
二、应用MATLAB实现BP神经网络:
要求有程序和实验结果
实验1
设计一个BP神经网络对曲线拟合。已知输入向量为
P=-1:0.1:0.1
T=(-0.832 -0.423 -0.024 0.344 1.282
3.456 4.02 3.232 2.102 1.504 0.248 1.242 )
使用不同的传递函数和训练函数,对达到同一误差的训练次数进行对比

实验2
根据表1,设计一个BP神经网络,利用表1中后八列(作为输入样本)预测序号15的跳高成绩。
在这里插入图片描述

实验结果

实验1

(1)传递函数tansig,sinsig训练函数traingda
在这里插入图片描述
在这里插入图片描述
(2)传递函数tansig,sinsig训练函数trainlm
在这里插入图片描述
在这里插入图片描述
实验代码

P = -1:0.1:0.1;
T = [-0.832 -0.423 -0.024 0.344 1.282 3.456 4.02 3.232 2.102 1.504 0.248 1.242 ];
net = newff( minmax
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值