前言:
此篇博客用于记录调用pyconverse库解析对话文本时遇到的问题与解决思路,以供大家参考。
文章目录
- pycoverse介绍
- 代码github链接
- 问题解决
-
- 1 [cannot import name ‘cached_download‘ from ‘huggingface_hub‘ 问题解决](https://blog.csdn.net/weixin_41492426/article/details/143215577)
- 2 [ModuleNotFoundError: No module named ‘huggingface_hub.snapshot_download‘](https://blog.csdn.net/weixin_48030475/article/details/134940914)
- 3 [Python 解决报错:OSError: [E050] Can‘t find model ‘en_core_web_md‘. It doesn‘t seem to b](https://blog.csdn.net/qq_45956730/article/details/129109559)
- 4 模型下载失败问题
- 5 [nltk 报错](https://blog.csdn.net/zhq426/article/details/102838084)
- 运行结果截图展示
- 心得
pycoverse介绍
对话分析在塑造金融/联络中心等各个行业的卓越客户体验方面发挥着越来越重要的作用,主要是为了更深入地了解客户,更好地满足他们的需求。这个名为
PyConverse
的库试图提供工具和方法,可以使用各种NLP技术从多个角度理解对话。
在哪里可以使用pycoverse?
主要用例面向呼叫中心呼叫分析,但Converse提供的大多数工具也可以在其他地方使用。
每一次通话中都隐藏着许多见解,Converse使您能够提取这些见解,并从运营效率、代理效率和监控客户体验等角度计算各种关键绩效指标。
如果你想回答这样的问题:
1.发言者在对话中表现出的总体情绪是什么?
2.代理商和客户之间是否有过死气沉沉的时期(沉默期)?如果是,多少钱?
3.客服对客户有同理心吗?
4.平均代理响应时间/平均保持时间是多少?
5.通话中说了什么?
pycoverse可以做什么?
1. 情绪识别
2. 移情陈述识别
3. 对通话文本分段
4. 从通话片段中识别话题
5. 计算各种类型的发言人属性:
1. 语言属性,如:字数/每句话的字数/否定词等。
2. 识别沉默和打断的时段
3. 问题识别(识别疑问句)
4. 识别无意义的语气词、助词等
6. 通过语言属性评估说话者的整体性质,并判断说话者是否:
1.健谈,口语流利
2.非正式/个人/社交
3.目标导向或前瞻/着眼未来/关注过去
4.识别抑制因素
7.文本摘要(抽象摘要)
代码github链接
【converse代码云盘下载链接】
下载链接: https://caiyun.139.com/m/i?2i3pdpZud0agc 提取码:okvg 复制内容打开中国移动云盘手机APP,操作更方便哦
问题解决
1 cannot import name ‘cached_download‘ from ‘huggingface_hub‘ 问题解决
如下,安装huggingface_hub==0.25.2即可解决
pip install huggingface_hub==0.25.2 -i https: