Tensorflow-GPU工具包了解和详细安装方法

目录

基础知识信息了解

显卡算力

CUDA兼容

Tensorflow gpu安装

CUDA/cuDNN匹配和下载

查看Conda driver的版本

下载CUDA工具包

查看对应cuDNN版本

下载cuDNN加速库

CUDA/cuDNN安装

CUDA安装方法

cuDNN加速库安装

配置CUDA/cuDNN环境变量

配置环境变量

核验是否安装成功

Tensorflow-gpu安装

命令安装

报错处理

核验安装结果


直通车:人工智能发展历程和工具搭建学习-CSDN博客

        通过之前的文章学习,我们已经安装好了Anaconda和Tensorflow2.4,但是在后期的学习中,会涉及到神经网络的学习等数据量较大的操作,普通的tensorflow-cpu版本处理速度较慢,所以我们再安装一个更加强大的tensorflow-gpu版本,它可以调用conda的接口实现gpu运算的平台,利用显卡帮助我们运算程序,以提高后期学习中的程序处理速度,提高学习效率。

基础知识信息了解

显卡算力

        在这个之前,我们首先要确保自己的电脑是英伟达显卡,并且运算能力在3.5以上,大家可以根据下面的网址查看自己电脑显卡的运算能力,然后还需要下载conda工具包和对应的gpu加速库cuDNN。

直通车:CUDA GPUs - Compute Capability | NVIDIA Developer

        后期安装CUDA通过deviceQuery.exe也可以看到当前显卡的算力。

CUDA兼容

        这里CUDA12.1是支持的最高版本的CUDA,可以向下兼容,且可以安装多个版本的CUDA,你可以通过更改环境变量来更改为你需要用到的CUDA版本。

Tensorflow gpu安装

CUDA/cuDNN匹配和下载

查看Conda driver的版本

        我们打开命令行窗口cmd,输入nvidia-smi,这里显示的是显卡的版本信息,这里显示的是conda driver的版本信息。

下载CUDA工具包

        直通车:CUDA Toolkit Archive | NVIDIA Developer

        我们去conda下载官网,下载CUDA工具包。根据刚刚我们查到的CUDA版本信息,此处我的CUDA版本为12.x,根据CUDA可以向下兼容的特性,我们可以对应下载CUDA11.4的工具包。

  &

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敲键盘的小夜猫

你的鼓励就是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值