前言
在上一章《【课程总结】Day11(下):YOLO的入门使用》的学习中,我们通过YOLO实现了对图片的分类任务。本章的学习内容,将以目标检测为切入口,了解目标检测流程,包括:数据标准、模型训练以及模型预测。
图片分类vs目标检测
通过查看YOLO网站的task目录,我们可以看到:在计算机视觉领域中,常见的任务包括目标检测(detect)、语义分割(segment)、图像分类(classify)、人体姿态估计(pose)、以及有向边界框(Oriented Bounding Box,OBB)等。
- 图像分类(classify)
- 定义:图片分类是指根据图像的内容将其分为不同的类别或标签。
- 输入:
- 输入是一张图像,通常是固定大小的RGB图像。
- 输出:
- 输出是图像所属的类别或标签,通常以概率分布的形式(例如:[0.2, 0.5, 0.1, 0.2])表示每个类别的概率。
- 模型会输出每个类别的概率值,最终选择概率最高的类别作为预测结果。
- 目标检测(detect)
- 定义:目标检测是指在图像中检测和定位物体的任务,同时识别物体的类别。
- 输入:
- 输入是一张图像,同样是RGB图像。
- 输出:
- 输出是图像中检测到的所有物体的边界框和类别信息。
- 通常是一个包含物体位置、类别和置信度的列表。
目标检测的问题
通过上图可以看到,目标检测会遇到以下问题:
- 图片中包含多个动物,并不能简单的分类这张图是长颈鹿还是斑马;
- 图片中的动物所在的位置也是大小不同,位置不同;
- …
传统算法的解决思路
在利用深度学习做物体检测之前,传统算法对于目标检测通常分为3个阶段:区域选取、特征提取和体征分类。
- 区域选取:首先选取图像中可能出现物体的位置,由于物体位置、大小都不固定,因此传统算法通常使用滑动窗口(Sliding Windows)算法,但这种算法会存在大量的冗余框,并且计算复杂度高。
- 特征提取:在得到物体位置后,通常使用人工精心设计的提取器进行特征提取,如SIFT和HOG等。由于提取器包含的参数较少,并且人工设计的鲁棒性较低,因此特征提取的质量并不高。
- 特征分类:最后,对上一步得到的特征进行分类,通常使用如SVM、AdaBoost的分类器。
深度学习的解决思路
Anchor-based(基于锚框)
定义:Anchor-based 方法通过在图像上生成一组预定义的锚框(Anchor Boxes),然后利用这些锚框进行目标检测。
流程:
- 生成锚框:在图像上生成一组不同尺寸和长宽比的锚框。
- 特征提取:通过卷积神经网络提取图像特征(套种图片中的物体)。
- 预测:对每个锚框预测偏移量和目标类别信息。
- 筛选:通过非极大值抑制(NMS)等方法筛选出最终的检测结果。
核心思想:
- 死框+修正量
20×20的锚框
40×40的锚框
80×80的锚框
优点:
- 相对容易实现和训练。
- 可以处理多尺度目标和不同长宽比的目标。
缺点:
- 需要预定义大量的锚框,增加了计算复杂度和训练难度。
- 对于不规则形状的目标可能不够灵活。
Anchor-free(无锚框)
定义:Anchor-free 方法不依赖于预定义的锚框,而是直接预测目标的位置和类别信息。
流程:
- 中心点检测:首先,在图像上“撒豆子”(也称为“CenterNet”),即在图像的每个位置(像素)处预测目标中心点的存在概率。这些中心点通常表示可能存在目标的位置。
- 边界框预测:对于每个被预测为目标中心点的位置,模型会进一步预测目标的边界框(向上下左右生长,套住要预测的问题)。
- 后处理:通过后处理算法(如非极大值抑制)来筛选和优化检测结果,以获得最终的目标检测结果。
核心思想:
- 中心点 + 四个方向的生长
优点:
- 更加灵活,可以适应各种目标形状和尺度。
- 减少了预定义锚框带来的计算复杂度。
缺点:
- 相对 Anchor-based 方法,Anchor-free 方法可能需要更多的训练数据和更复杂的网络结构。
- 在处理小目标或密集目标时可能性能略逊于 Anchor-based 方法。
目前,目标检测基本使用anchor-free的方法。
目标检测的两种策略
目标检测具体的开展策略有两种:
方式 | 过程 | 代表 |
---|---|---|
方式1 | 1. 先对输入图像进行切片。 2. 对每一片进行特征提取。 3. 对提取的特征进行分类和回归。 |
MTCNN |
方式2 | 1. 先对输入图像进行特征提取。 2. 对提取的特征进行切片。 3. 对每一片进行分类和回归。 |
YOLO |
两个例子
获取视频头内容进行目标检测
from ultralytics import YOLO
import cv2
# 加载YOLO模型
model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture(0)
while cap.isOpened():
# 读取视频帧
ret, frame = cap.read()
if not ret:
break
# 使用YOLO模型检测物体
results = model(frame)
# 绘制预测结果
img = results[0].plot()
# 显示检测结果
cv2.imshow("frame", img)
if cv2.waitKey(1) == ord("q"):
break
# 释放资源
cap.release()
cv2.destroyAllWindows()
运行以上代码,YOLO可以将摄像头中的视频按帧逐帧检测物体。
读取图片进行目标检测
import cv2
from ultralytics import YOLO
import os
# 设置环境变量,解决OMP: Error #15: Initializing libiomp5.dylib, but found libiomp5.dylib already initialized的问题
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# 加载模型
model = YOLO("yolov8n.pt") # 使用预训练模型权重
# 读取图片
image = cv2.imread("animal.png")
# 预测
results = model(image)
result = results[0]
img = result.plot()
from matplotlib import pyplot as plt
# 对对象进行可视化,从RGB转换为BGR
plt.imshow(X=img[:, :, ::-1])
运行结果:
通过查看result
的内容,可以得到:
cls
: 表示检测到的物体类别,是一个包含类别标识号的张量。
例如:上例分别为类别22、22、22、23和0。这意味着模型在图像中检测到了不同类别的物体。
conf
: 表示置信度,即模型对检测结果的信心程度,是一个包含置信度值的张量。
例如:上例分别为[0.9189, 0.9098, 0.8850, 0.8815, 0.2930]表示模型对每个检测结果的置信度,置信度值越高,表示模型对该检测结果的信心程度越高。
data
: 包含了检测结果的详细数据,如边界框坐标、置信度、类别等信息。
例如:第一行数据[7.6884e+02, 5.6770e+02, 9.7418e+02, 7.7100e+02, 9.1892e-01, 22]表示一个边界框的左上角和右下角坐标、置信度和类别。
shape
: 结果张量的形状。
例如:[5, 6]表示这个张量是一个二维张量,上图中一共预测了5个目标检测结果。
xywh
: 表示边界框的中心坐标、宽度和高度。
例如:[[871.5070, 669.3497, 205.3398, 203.3070], [322.5407, 673.7639, 251.3661, 181.0720], …]表示了每个检测结果的边界框信息。
xyxy
: 表示边界框的左上角和右下角坐标。
例如:[[768.8371, 567.6962, 974.1769, 771.0032], [196.8576, 583.2280, 448.2238, 764.2999], …]表示了每个检测结果的边界框的左上角和右下角坐标。
自定义模型训练
以上的目标检测都是基于预先训练好的模型,如果想自主实现一个模型的训练以及目标检测,具体流程如下:
数据准备
为了更加接近实战,我计划在天池及飞桨社区找一份数据集进行目标检测的模型训练。
数据集地址:https://aistudio.baidu.com/datasetdetail/91732
数据集简述:
一个理想的智能零售结算系统应当能够精准地识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格。这是一份智能零售柜识别的图片数据集,非常适用于进行目标检测。
数据分析
由于该数据集采用VOC格式,其内容形式与YOLOv8的格式不同,所以我们需要做相关的处理。
VOC数据集目录格式:
我有一个VOC的目标检测数据集,其目录结构为:
VOC
|-Annotations
|-ori_000_XYGOC20200313162026456_1.xml
|-ori_000_XYGOC20200313162953549_1.xml
|-ori_001_11_0.xml
|-ori_001_4_0.xml
|-ori_001_6_0.xml
|-ori_t1_TEST20191101164758498_1.xml
|-ori_t1_TEST20191101164829232_1.xml
|-...
|-JPEGImages
|-ori_000_XYGOC20200313162026456_1.jpg
|-ori_000_XYGOC20200313162953549_1.jpg
|-ori_001_11_0.jpg
|-ori_001_4_0.jpg
|-ori_001_6_0.jpg
|-ori_t1_TEST20191101164758498_1.jpg
|-ori_t1_TEST20191101164829232_1.jpg
|-...
|-labels.txt
|-test_list.txt
|-train_list.txt
|-val_list.txt
# labels.txt的内容格式为如下:
3+2-2
3jia2
aerbeisi
anmuxi
aoliao
asamu
baicha
baishikele
...
# train_list.txt内容格式如下:
JPEGImages/ori_XYGOC2021042115092870201IK-4_0.jpg Annotations/ori_XYGOC2021042115092870201IK-4_0.xml
JPEGImages/ori_XYGOC2021010413165585501IK-3_0.jpg Annotations/ori_XYGOC2021010413165585501IK-3_0.xml
YOLOv8数据集的目录结构
|-images
|-train
|-ori_000_XYGOC20200313162026456_1.jpg
...
|-val
|-ori_t1_TEST20191101164758498_1.jpg
...
|-lables
|-train
|-ori_000_XYGOC20200313162026456_1.txt
|-val
|-ori_t1_TEST20191101164829232_1.txt
数据转换
1. 创建Dataset根目录
import os
# 创建Dataset根目录,同时按照YOLO的格式分别创建train和val目录
def create_directories(base_dir):
dirs = [
os.path.join(base_dir, "images/train"),
os.path.join(base_dir, "images/val"),
os.path.join(base_dir, "labels/train"),
os.path.join(base_dir, "labels/val")
]
for dir in dirs:
os.makedirs(dir, exist_ok=True