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Abstract For more than a decade, the PAPI performance monitoring library has
helped to implement the familiar maxim attributed to Lord Kelvin: “If you cannot
measure it, you cannot improve it.”Widely deployed and widely used, PAPI provides
a generic, portable interface for the hardware performance counters available on all
modernCPUs and someother components of interest that are scattered across the chip
and system. Recent and radical changes in processor and system design—systems
that combine multicore CPUs and accelerators, shared and distributed memory, PCI-
express and other interconnects—as well as the emergence of power efficiency as a
primary design constraint, and reduced data movement as a primary programming
goal, pose new challenges and bring new opportunities to PAPI. We discuss new
developments of PAPI that allow for multiple sources of performance data to be
measured simultaneously via a common software interface. Specifically, a new PAPI

component that controls power is discussed. We explore the challenges of shared
hardware counters that include system-wide measurements in existing multicore
architectures. We conclude with an exploration of future directions for the PAPI

interface.

4.1 Introduction

Most of the major tools that high-performance computing (HPC) application devel-
opers use to conduct low-level performance analysis and tuning of their applications
typically rely on hardware performance counters to monitor hardware-related activ-
ities. The kind of counters that are available is highly hardware dependent; even
across the CPUs of a single vendor, each CPU generation has its own implementa-
tion. The PAPI performance-monitoring library provides a clear, portable interface to
the hardware performance counters available on all modern CPUs, as well as some
GPUs, networks, and I/O systems [1, 8, 9, 13]. Additionally, PAPI supports trans-
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parent power monitoring capabilities for various platforms, including Intel Xeon Phi
and Blue Gene/Q [10]—enabling PAPI users to monitor power in addition to tradi-
tional hardware performance counter data, without modifying their applications or
learning a new set of library and instrumentation primitives.

With the increase in scale, complexity, and heterogeneity of modern extreme scale
systems, the design of future HPCmachines will be driven by energy efficiency con-
straints. Hence, the ability to control power and energy consumption has become
one of the critical features for future development. To allow the HPC community to
not only use PAPI to monitor but also manage power consumption, PAPI has been
extended with a component supporting power writing capabilities. This paper pro-
vides detailed information describing this new component and explores its usefulness
with different case studies.

At the same time, the rapid changes and increased complexity we have witnessed
in processor and system design—with systems that combine multicore CPUs and
accelerators, shared and distributed memory, PCI-express and other interconnects—
require a continuous series of updates and enhancements to PAPIwith richer andmore
capable methods that are needed to accommodate these new innovations. Extending
PAPI to monitor performance-critical resources that are shared by the cores of mul-
ticore and hybrid processors, including on-chip communication networks, memory
hierarchy, I/O interfaces, and power management logic, will enable tuning for more
efficient use of these resources. Failure to manage the usage and, more importantly,
contention for these “inter-core” resources has already become a major drag on
overall application performance. We discuss one of PAPI’s new features: the Counter
Inspection Toolkit (CIT), which is designed to improve the understanding of these
inter-core events. Specifically, the CIT integrates micro-benchmarking based meth-
ods to gain a better handle on off-core/un-core/NorthBridge related events. We aim
to define and verify accurate mappings between particular high-level concepts of
performance metrics and underlying low-level hardware events. This extension of
PAPI engages novel expertise in low-level and kernel-benchmarks for the explicit
purpose of collecting meaningful performance data of shared hardware resources.

In this paper we outline a new PAPI component that supports power and energy
controlling through the Intel RAPL interface. A detailed description of the power
writing capabilities is provided in addition to case studies that validate the usage
of this component. Further, we briefly describe the objectives of the PAPI Counter
Inspection Toolkit, and then focus on the micro-kernels that will be used to measure
and correlate different native events.

4.2 Power Management Using the Intel RAPL Interface

As processors have grown more complex, power consumption has also increased.
This increase in power consumption not only results in increased power costs, but
also increased costs for managing the waste heat that is generated by the compo-
nents. This power and cooling situation is exacerbated by the sizes of data centers
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and supercomputers. For some time now, interest in managing this power consump-
tion has been increasing, and hardware manufacturers have been introducing low
level controls that allow users to make trade-offs between power and computational
performance.

Starting with the Sandy Bridge architecture, Intel has included a RAPL (Running
Average Power Limit) interface for accessing and managing power features on the
processor [5]. This interface exposes features designed for thermal management to
a more general user-space. Much of the RAPL interface is accessed by reading and
writing information to MSRs (Model Specific Registers).

Current directions for PAPI development include providing applications the abil-
ity to trade-off power for performance. To this end, we are experimenting with a
PAPI component that will include control aspects, i.e., this component has an active
interface that writes values to the RAPL/MSR interface. This is a significant change
from all prior PAPI components which have had an entirely passive measurement
interface to read information and events.

This newRAPL/MSR component is expected to, eventually, actively handle inter-
rupts (thermal limits) and change systemstates (set per-core clockgating, set per-node
power cap, enable/disable turbo mode). The following section discusses our early
prototype version of the RAPL/MSR component, which has not yet been released.

Providing users with unrestricted access to write data to MSRs (Model Spe-
cific Registers) can have many significant performance and security implications.
In order to encourage system administrators to give wider access to the MSRs on
a machine, LLNL has released a Linux kernel module (msr_safe) which pro-
vides safer, white-listed access to the MSRs that can be tuned by the site adminis-
trator [11]. Lawrence Livermore National Laboratory scientist Barry Rountree has
released a library (libmsr) to provide a simple, safe, consistent interface to several of
the model-specific registers (MSRs) in Intel processors via the msr_safe kernel
module [15].

PAPI has created a component that can provide read and write access to the infor-
mation and controls exposed via libmsr. A scientist can use the well-known, stan-
dardized PAPI API to read the state of power consumption on a CPU socket and
the current performance of the code, make determinations about the desired CPU
performance, and adjust and cap the power consumption as desired. RAPL allows
users to set power limits over two specific time windows—meaning, one can have
local power spikes, while still keeping the power low over a larger time window. One
example of a situation where this might be of interest is when a scientist is aware that
the computation requirements will decrease due to communication (I/O bound) and
that the overall execution timewill not suffer if the CPU power is capped temporarily.

Figure4.1 shows a simple example using PAPI to measure and adjust the power
consumption of an iterative program where each iteration does one consistent unit of
work. Initially the power is at a default high level so the performance of the unit task
is high. Then we attempt to cap the power at a very low level, below the minimum
allowed for the CPU. The power drops to the allowed minimum and the computation
time for a unit of work increases. At each 10th iteration the power cap is increased,
and the time taken for a unit of work decreases. Finally, we attempt to increase the
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Fig. 4.1 Power controlling with PAPI example

power cap higher than the allowed maximum for the machine. At this point, time
taken for a unit of work stays consistent. This simple demonstration shows PAPI’s
new ability to write information to a counter as well as reading data from a counter.

4.2.1 Case Study: LU Factorization

Here we consider a different usage scenario where controlling power may be appro-
priate. Many applications can be decomposed as dataflow DAGs (Directed Acyclic
Graph), with data dependencies between the various tasks that compose the appli-
cation. This approach to structuring applications as dataflow DAGs is increasing in
popularity with the advent of heterogeneous hardware platforms with large numbers
of computation resources, since programming and scheduling on such platforms is a
challenge. Dataflow DAGs can be efficiently managed by a runtime and tend to have
good load balancing and efficiency characteristics.

If we have an application that is instantiated as a dataflowDAG, then there is often
a critical path of tasks that determines the overall execution time of the application.
An opportunity for saving power could exist if we schedule all the tasks in the
critical path on fast resources, and then schedule the remaining tasks on sockets
with decreased power consumption. Under certain circumstances, it can be possible
to execute the application without any loss of overall execution time while saving
power. However, in most cases there will be some increase in overall execution time.

As an example of a dataflowDAG computation, we consider the tile-based imple-
mentation of the LU factorization of a matrix as described in pseudocode in Fig. 4.2a.
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(a) (b)

Fig. 4.2 On the left we have an LU factorization algorithm that is expressed as tasks (i.e., GETRF,
LASWP, TRSM, GEMM) acting on data items (i.e., A(i, j)). When these tasks are executed, the
execution can be viewed as a dataflow DAG, where the vertices are the tasks and the edges are data
dependencies between them. a LU Factorization. b LU Factorization DAG

The details of this implementation are beyond the scope of this paper, for more infor-
mation on the LU DAG implementation, the reader is referred to [2, 7]. In a nutshell,
each function corresponds to a task that works on a unit of data—either a tile or a
row or an entire panel of data. For example, the red GETRF tasks are large complex
tasks that work on an entire panel of data, while the other tasks work on smaller
chunks of data and execute much faster.

The DAG of the execution is shown in Fig. 4.2b which reveals that the red GETRF
tasks are in the critical path of the graph. Since the GETRF tasks operate on an entire
panel of data and are relatively inefficient, they take longer to execute than the other
tasks. Our goal is to take this knowledge into consideration by scheduling these
expensive GETRF tasks on faster cores because we want them to execute as fast
as possible. Other tasks that are not on the critical path are allowed to execute on
sockets and cores where the power usage is decreased and where they may run more
slowly. Ultimately, this approach will enable us to save energy at a minimal cost to
the overall execution time as determined by the critical path.

We conducted this experiment on a 2.90GHz Intel Xeon Sandy Bridge E5-2690
system, and here we show some small scale results using two sockets (four cores per
socket). In Fig. 4.3 we have a small trace from the execution of the dataflow DAG for
LU factorization. We can see that the red GETRF is taking a large amount of time as
expected. Since this slow task is in the critical path of the execution, there are many
occasions where the other CPUs complete all other available tasks and are in an idle
state waiting for the GETRF to complete.
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Fig. 4.3 Both socket 0 and socket 1 running at full power. Note that the panel factorization GETRF
task (red) is long and on the critical path, so there is white space where no tasks are available to run
on socket 1

Fig. 4.4 Slow down socket 1 using RAPL and lock critical path GETRF tasks to socket 0. The
GEMM tasks (green) take longer, filling out the white space on socket 1. This occurs without any
overall loss in time for the full execution

This leads us to our opportunity to save power without affecting the overall com-
putation time. We use the runtime environment to restrict the GETRF task to run on
socket 0. We use the PAPI libmsr component to write to the RAPL MSRs in order to
limit and decrease the power consumption at socket 1. This causes the tasks assigned
to socket 1 to take longer, so socket 1 has a higher level of occupation (at a lower
power) and does not have asmuch idle time. In Fig. 4.4 we observe that the individual
green GEMM tasks on socket 1 take longer to execute than on socket 0, absorbing
the idle time that was wasted in the previous trace. In this small example, the over-
all computation time was unaffected by slowly reducing the power consumption on
socket 1.

We now extend to a larger scale experiment, wherewe run the tile LU factorization
on a matrix that is of size N = 17920, consisting of 80 × 80 tiles of 224 × 224
double precision numbers. Once again this experiment is run on a 2.90GHz Intel
Xeon SandyBridge E5-2690 system using two sockets (four cores per socket). For
this larger problem, the low power execution achieves a small decrease in total power
consumed (4001J) when compared to the high power execution (4136J). However,
the overall time is increased during the low power execution. This is because for the
larger matrix size there are so many GEMM tasks generated for each slow POTRF
task, that there is minimal idle time for the low power execution to absorb. For other
types of dataflowDAGcomputation,where there is sufficient idle time, this technique
may be able to save power while maintaining the overall execution time (Fig. 4.5).
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4.3 Counter Inspection Toolkit

In modern architectures, native events count behaviors that relate to the specifics
of a particular architecture, but do not necessarily map to higher level concepts
of performance. For example, when a memory region is accessed by an application,
assessing the level of cache reuse is important when studying the performance of that
application. One would expect that this can be done using a native event that counts
cache misses, such as the events LLC_MISSES and LLC-LOAD-MISSES—which
measure the last level cache (L3) misses.

However, our experiments show that the numbers reported by PAPI do not always
match expectations. Specifically, LLC measurements do not match the expected
behavior of the micro-benchmarks in the BlackjackBench [3] suite, which we devel-
oped in our previous work. One of the key goals of BlackjackBench was to character-
ize the cache hierarchy, so special attention was given to stressing different levels of
the cache hierarchy. The way this is achieved is through the use of pointer chaining.

Figure4.6 shows an abstracted code snippet and a schematic outline of pointer
chaining.Thekey idea is that the benchmark is split into a setupphase and ameasuring
phase. During the setup phase an array is allocated and each element is made to point
to another element (i.e., every element stores the address of another element of the
array). This creates a chain between the elements of the array. Since this is done in a
setup phase—during which neither time, nor hardware events are being measured—
the process can be arbitrarily expensive. As a result, every time we need to select the
next element of the chainweutilize thePOSIX functionrandom(),which has a very
large period (approximately 16 ∗ ((231) − 1)) and good (albeit not cryptographically
strong) randomness properties. In the context of our benchmark, good randomness
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Fig. 4.6 Random pointer chaining

properties means that when we traverse the chain during the measurement phase the
memory access sequence will consist of jumps that do not obey any regular patterns
that the hardware prefetcher could guess.

Clearly, the actual setup code is more complex than shown in the pseudocode
of the figure in order to ensure that the next element that we choose is neither an
element that has already been used, nor the current element, and that each pointer is
aligned properly so that we only access one element per cache line. Also, as shown
in the figure, we populate the buffer one page at a time, in order to stress the cache
without stressing the TLB. This is achieved by using a modulo operation (%) to keep
only the lower bits of the numbers returned by random(). Finally, when we reach
the last element, we make it point back to the first, so that we can traverse the chain
multiple times without explicitly starting and stopping the traversal.

After the setup phase has completed, the measuring phase starts by initiating
the desired counters. Then we traverse the pointer chain using a simple loop that
dereferences each element to find the next, and when the traversal is over we read
the values of the counters. As we discussed earlier, the non-trivial randomness of
the chosen setup method ensures that there will be few (if any) regular patterns in
the memory traversal, or at least not enough to affect the overall execution time due
to hardware prefetching. Furthermore, compilers are incapable of optimizing the
code that traverses the chain, since the location of each memory access depends on
program data (i.e., the next address is always the value read in the previous array
access). As a result, all elements will be explicitly accessed by the code and the
probability of any of them having been prefetched by the hardware is low.

In BlackjackBench, we used this technique to setup our arrays and then measured
the time it took to traverse such an array as a function of the array size. As shown in
Fig. 4.7 the access latency per element jumps every time the array size exceeds the
size of a different level of cache, and stays constant while the array fits in a given
level of the cache hierarchy. The accuracy of these results make us fairly confident
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Fig. 4.7 Benchmark timing

in the behavior of the benchmark. However, this same benchmark, when used in
conjunction with PAPI native events to measure LLC misses, gives us inconsistent
results. Depending on the exact native event used and the architecture on which the
experiment takes place, the resulting measurement can be more than expected, less
than expected, or even zero!

Given this mismatch, there is a need for a way to validate native events, or in
other words, assess whether the value a native event measures matches what a human
developer thinks it is measuring. Furthermore, there is a need to define high level
“predefined” events that combine the values of native events in order to provide mea-
surements that match developer intuition. The need for validation and assisted defin-
ition of high level events is becoming increasingly urgent in the context of inter-core
resource counters, as understanding and utilizing those is particularly challenging.

The Counter Inspection Toolkit, which we are developing, will provide kernels
that perform well-defined operations and will use them to measure native events.
Subsequently, automatic analyses will attempt to correlate different native events, or
combinations of native events to the high level operations. We expect the outcome
of this research to be threefold. First, it will increase the portability of PAPI into new
hardware with new native events. Second, it will assist PAPI developers in combining
native events to define predefined events. Finally, it will provide customization by
enabling the user of PAPI (whether that is a human developer of an application, or an
additional layer of performance tools) to define custom combinations of events to fit
whatever parameters interest a particular user.
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4.4 Related Work

Although PAPI has been widely utilized by HPC users for many years, drawing on
its strength as a cross-platform and cross-architecture API, there are other tools for
gathering performance information like hardware counter data, profiling and tracing
data, and MPI library state data.

The perf tool [12] makes use of the perf_event API which is part of the Linux
kernel. Although perf_event attempts to provide a generic interface for Linux plat-
forms, it is still very low-level and the information returned requires considerable
interpretation to be useful to tool developers or end users.

Processor vendors supply tools for reading performance counter results. This
includes Intel VTune [16], Intel VTune Amplifier, Intel PTU [6], and AMD’s Code-
Analyst [4]. These program the CPU registers directly, avoiding the Linux kernel.
Since the counter state is not saved on the context switch, only system-wide sampling
is available, and there is also no API for accessing the results.

The likwid lightweight performance tools project [14] allows accessing perfor-
mance counters by bypassing the Linux kernel and directly accessing hardware. This
can have low overhead but can conflict with concurrent use of other tools accessing
the counters. It can also expose security issues, as it requires elevated privileges to
access the hardware registers and this can lead to crashes or system compromises.
likwid provides access to traditional performance counters and also RAPL energy
readings. Unlike PAPI, likwid is not cross-platform, only x86 processors are sup-
ported under Linux, and only system-wide measurements are available (counters are
not saved on context-switch). Currently there is no API for accessing values gath-
ered with likwid; a separate tool gathers the results and stores them in a file for later
analysis.

4.5 Conclusion and Future Work

With larger andmore complex high performance systems on the horizon, energy effi-
ciency has become one of the critical constraints. To allow the HPC community to
“control” power, in addition to the traditional hardware performance counter “mon-
itoring” approach, PAPI has been extended with a component that supports power
writing capabilities through the Intel RAPL interface. Whether PAPI is applied as
a stand-alone tool or as a middleware by third-party performance analysis tools,
the new PAPI component for power controlling can be used without the need for
application developers to modify their applications or learn new library primitives.

Furthermore, we introduced PAPI’s new Counter Inspection Toolkit, which will
be fully integrated for future PAPI releases. It establishes methods to automatically
determine which hardware event combinations map to particular high level concepts
of performance.
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