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Abstract—In order to train a computer agent to play a text-
based computer game, we must represent each hidden state of
the game. A Long Short-Term Memory (LSTM) model running
over observed texts is a common choice for state construction.
However, a normal Deep Q-learning Network (DQN) for such an
agent requires millions of steps of training or more to converge.
As such, an LSTM-based DQN can take tens of days to finish
the training process. Though we can use a Convolutional Neural
Network (CNN) as a text-encoder to construct states much
faster than the LSTM, doing so without an understanding of
the syntactic context of the words being analyzed can slow
convergence. In this paper, we use a fast CNN to encode position-
and syntax-oriented structures extracted from observed texts as
states. We additionally augment the reward signal in a universal
and practical manner. Together, we show that our improvements
can not only speed up the process by one order of magnitude
but also learn a superior agent.

Index Terms—text-based games, trajectory, dependency parser,
auto-attention

I. INTRODUCTION

Ever since the work of [1] in learning to play Atari games,
the question of whether we could also learn to play text-
based games has naturally arisen [2]–[4]. However, the goal
of reaching par with human players on these games is still
beyond our reach, unlike that shown for Atari games. Text-
based games, especially those designed for real human players,
are elaborately built and hence sophisticated. Zork [4], [5]
is one such game, with more than 30 rooms to explore, and
combines a maze, trivia, combat, time-sensitive tasks, puzzles,
and stochastic events. Most attempts to automatically learn to
play real text games can only explore a few rooms of a game,
achieving about 10 percent of the total available score.

Unlike Atari action games where one uses the joystick
to play, and thus has up to 18 different actions available
(including a button press), a player uses brief natural language
sentences as actions to interact with text-based games. The
number of valid actions is thus theoretically infinite, and even
when the vocabulary and maximum action length are limited,
can still be in the hundreds or even thousands. This makes
policy-based learning quite difficult.

The Deep Q-learning Network (DQN), first introduced by
[1], is also the main method used to play text-based games.
One key component of the DQN as applied to text games is its
encoding of context sentences into hidden states to represent

game state. As the length of context sentences can vary from a
few words to thousands of words, the LSTM [6] is seemingly
a natural choice for this task [4], [7]–[9].

However, one important limitation of DQN learning is that
it usually needs millions of training steps to converge, and
this can take days with the LSTM as the encoder, even for a
small quest with only tens of actions. Since full-fledged text-
based games usually involve multiple quests and have many
more actions available to try, training an LSTM-based DQN
agent for text-based games such that it may reach a level of
quality similar to that observed for Atari games is functionally
impossible.

[10] shows that we can use a convolutional neural network
(CNN) as a text encoder in classification tasks for faster
training. [3] uses a similar CNN encoder to build a DQN agent.
However, previous work of building DQN agents focuses on
DQN architecture [8], [9], [11] or the generation and selection
of actions [2], but lacks much analysis of the observed context
sentences.

In this paper, we focus on the analysis of observed texts and
how they work with different encoder architectures. We show
that both context sentence processing and encoder selection
can lead to faster convergence of the DQN training process
and result in superior agents. After analyzing the training
process, we also find that instant reward manipulation and
sample strategies can affect the training process. Furthermore,
we observe that the CNN encoder with a max-pooling layer
can be treated as an auto-attention mechanism in finding key
components in the context to make decisions. Our final trained
agent on Zork can reach state-of-the-art scores within one
million training steps, or about 10 hours.

The novel contributions of our paper are:

• We compare different encoders for the DQN framework,
and determine that using CNN with a max-pooling layer
as the encoder is ideal, and has the extra benefit that
max-pooling functions as an auto-attention mechanism.

• We use position embeddings when encoding trajectories
to reach the state-of-the-art result on Zork;

• We use a dependency parser to reorder game context
sentences such that syntactically related elements are
close to each other, which leads to a halving of our
DQN agent’s convergence time. We use reward shaping
methods for further better training results.
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II. METHODS

A. Text-based games

When playing a text-based game, the game first outputs a
sentence to describe the current environment. Then a player
inputs a sentence as the action to the game, and waits for the
next game output and a cumulative score from the beginning
of the game. An example of taking an egg in Zork is

l1: West of House You are standing in an open field west of a
white house, with a boarded front door. There is a small mailbox
here. (Score: 0, Moves: 0)

l2: > go north
l3: North of House You are facing the north side of a white house.

There is no door here, and all the windows are boarded up. To the
north a narrow path winds through the trees. (Score: 0, Moves: 1)

l4: > go north
l5: Forest Path This is a path winding through a dimly lit forest.

The path heads north-south here. One particularly large tree with
some low branches stands at the edge of the path. (Score: 0 Moves:
2)

l6: > climb tree
l7: Up a Tree You are about 10 feet above the ground nestled

among some large branches. The nearest branch above you is above
your reach. Beside you on the branch is a small bird’s nest. In the
bird’s nest is a large egg encrusted with precious jewels, apparently
scavenged by a childless songbird. The egg is covered with fine gold
inlay, and ornamented in lapis lazuli and mother-of-pearl. Unlike
most eggs, this one is hinged and closed with a delicate looking
clasp. The egg appears extremely fragile. (Score: 0, Moves: 3)

l8: > take the egg
l9: Taken. (Score: 5, Moves: 4)
We call the game output the master, a player’s input sen-

tence the action, and the gap between two consecutive scores
the instant reward. A running log of a text-based game is a
composition of master-action pairs, which we call a trajectory.
In this example, l1, l3, l5, and l7 each are masters, while l2,
l4, l6, and l8 each are actions. The instant reward of taking the
egg is five points. The trajectory using to make the decision
of choosing take the egg is the concatenation from l1 to l5, to
denote this we use the label t1−5.

B. DQN framework

A text-based game constitutes a set of states S, a set of
actions A, a transition matrix T : (S,A)→ S, and an instant
reward matrix R : (S,A)→ R. At a state s, the game accepts
an action a, then transitions to new state s′ with master m and
instant reward r. The game terminates upon reaching certain
terminal states, e.g. the actor is defeated in fighting. If S and
A are finite, we can search for a policy to play the game with
(simple) Q-learning: Let Q : (S,A)→ R be a matrix over the
(state, action) space (S,A). Each value Q[s, a] is the expected
reward that the agent will get in the future until termination
if choosing a at state s. Given the stochastic attribute of the
FST, a transition of T [s, a] could result in multiple new states.
E.g. Using the same action a at the state s, with probability
of 0.7 the player enters a room with no thief (s′1), while with
probability of 0.3 the player enters the same room by with a
thief in there (s′2). Computing the Q-value of the state s needs
to compute the weighted sum of both of the next states s′1 and

s′2. We then have an iterative update function for computing
Q:

Q[s, a] = ET [s,a]

(
R[s, a] + γ ∗max

a′
(Q[T [s, a], a′]])

)
, (1)

where ET [s,a] is the expectation according to multiple new
states, and γ is a hyperparameter that controls the importance
of future rewards.

With the knowledge of the Q-matrix, the policy of playing
a game is to choose the action with the highest Q-value at
each state s,

a← argmaxQ[s, ∗].

The DQN was introduced by [1] for playing Atari video
games. In video games, the FST’s state is implicitly provided
by video frames, while the action is explicitly encoded as a
joystick movement combined with the presence or absence of
a button press. [1] use a CNN to encode video frames into
compact hidden states. The Q-matrix is then represented by a
function fDQN : (S,A)→ R. Unlike simple Q-learning, deep
Q-learning allows for very large or even infinite A and S.

According to the Q-matrix update in Equation 1, DQN
training requires training samples in the form of a tuple
(s, s′, a, r) consisting of the current state s, the action a, the
next state s′ = T [s, a], and the instant reward r = R[s, a].
In text-based games, the state of the game is not simply a
game location such as up a tree, but is a trajectory. In our
egg taking example, at both l7 and l9 the player is in the
location up a tree, but in l9 the player also has an egg in the
inventory. Having the complete trajectory is a means for easily
differentiating these states.

With our egg taking example, four training samples exist:
(t1−1, t1−3, go north, 0),
(t1−3, t1−5, go north, 0),
(t1−5, t1−7, climb tree, 0),
(t1−7, t1−9, take the egg, 5).
The DQN training is a process of repeatedly playing the

game in an exploration-exploitation manner: At every step,
the DQN agent chooses a random action to play the game
with a probability ε (exploration), or else it chooses the action
with the best Q-value (exploitation). The ε decays from 1 to
almost zero to anneal this process.

The DQN collects the training sample (s, s′, a, r) at every
step into a replay memory. The training process gets samples
from the replay memory to update the DQN. The loss function
to update the DQN is(

fDQN (s, a)− (r + γ ∗max
a′

fDQN (s′, a′)
)2
,

which is the square error loss between expected Q values and
predicted Q values.

We use the same DQN framework to play text-based games,
but encode texts instead of video frames.
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Fig. 1: An example of CNN-DQN using three size-3 convo-
lutional filters with a max-pooling layer on a trajectory go
north forest path this is a path .... S is the start of sentence
token. We use two start of sentence tokens to make sure the
vectors generated from convolutional filters have the same
length with the original trajectory. Each convolutional filter
(triangle) encoding the whole trajectory along the dimension
of tokens generates a feature vector.

C. Trajectory Encoder

The purpose of the trajectory encoder is to determine the
hidden states of the game. We initially use an LSTM [6]
as the encoder. The LSTM encodes sentences in a recurrent
way, with an inner state vector to be updated after consuming
each token, yielding two types of output: an output vector
for each consumed token, and a final state. [8] uses the
result vector from a mean-pooling layer on the output vector
as the state, while we use final state as the encoded state.
Our CNN encoder is inspired by [10], but we also use
different pooling layers. The CNN encoder uses multiple one-
dimensional convolutional filters with different kernel sizes to
encode sentences, then uses a mean-pooling layer or a max-
pooling layer along the dimension of the sentence, and finally
concatenates pooling results into a one-dimensional vector. An
example of the max-pooling CNN-DQN is shown in Figure 1.

The fact that the CNN encoder encodes blocks of tokens
in a parallel way makes it much faster than the token-by-
token LSTM encoder. However, the vanilla CNN encoder loses
track of the position relationship between tokens, since it
treats sentences as bags of words. To mitigate this, we apply
position embeddings together with word embeddings to keep
the position information, in the same way as [12]. As we will
see in experiments, the CNN encoder with the use of position
embeddings results in faster training and superior agents.

III. EXPERIMENT SETUP

We experiment using the classic 1979 game Zork I [5].
All experiments are run on a machine with two Tesla K80
GPUs (one for training, the other for evaluation) with four
CPU threads. We use Python 3.6.8 and Tensorflow 1.12.0.

A game log collected from an expert player [13] to win all
points (350) of Zork I consists of 345 steps with 130 types
of actions. We think of the log as a near-optimal solution to

solve Zork and constrain our system to use these 130 actions
in our experiments.

A. Reward shaping and clipping

Reward shaping can embed common sense into the training
process, leading to better agents. For the sake of faster
convergence, we add −0.1 to all instant rewards. Negative
masters such as “you don’t ...” and “you can’t ...” mean there
is something wrong with our chosen actions, so we add a
penalty of −1 on instant rewards.

We find that reward clipping is important in training the
DQN to play text-based games. [8] uses a reward shaping
method to make the expected state more noticeable by magni-
fying quest final scores. In this paper, we use a similar reward
clipping method as [1]. We impose a variant of Huber loss
[14], clipping the reward so it falls between -1 and 1, without
modification of rewards that are initially in that range. Clipping
rewards in this way is robust to outliers and independent of
the reward systems introduced by different games, resulting in
better generalization ability to all other games.

B. Hyperparameters

Careful choice of hyperparameters is vital to successful
stochastic DQN training. We use 50,000 observation steps,
500,000 replay memories, and linearly decay ε from 1 to
0.0001 in 2,000,000 steps. Since the near-optimal path to
solving Zork is 345 steps, we set each episode to have a
maximum of 600 steps.

We save a DQN model and run evaluation every 5,000 steps
of training (as one epoch). For each evaluation, we use a fixed
ε = 0.05 as other work did [1], [2], [8] and run 10 episodes
with the same number of steps per episodes for training.

We initialize our DQN models with random word embed-
dings and position embeddings. We use a fixed embedding
size of 64. At every training step, we draw a minibatch of
32 samples and use a learning rate of 1e− 5 with the Adam
optimizer. We trim trajectories to contain no more than 21
sentences to avoid unnecessarily long concatenated strings.

IV. RESULTS AND DISCUSSION

A. Uniform sampling, weight-, and gap-based sampling

Uniform sampling, as first introduced in [1], is the most
common method to draw samples from the replay memory
to train the DQN. However, it is not a general method that
could work well from game to game. From our observation, the
distribution of rewards is highly biased in the replay memory:
Samples with negative and zero rewards are more likely to
appear while those with positive rewards are rare.

In an experiment using only 11 actions, where we collect
43,069 training samples, 98.7% of them receive negative or
zero rewards, while only 1.3% of them are positive rewards.
For another experiment using 21 actions with 58,608 samples,
99.9% of them are negative or zero samples, and only 0.1% of
them are positive ones. Training a DQN agent with uniform
sampling on these replay memories can easily miss important
samples with positive rewards and lead to a failed agent.



Since uniform sampling will naturally lead to an imbalance
favoring zero or negative rewards, we seek a non-uniform sam-
pling method during DQN training. We explore two different
weighted sampling strategies in our experiments, fixed-weight
and priority experience sampling. Fixed-weight sampling is
based on the previous observation: positive reward samples are
rare but more important. Even though we could use frequency
counting as weights, a reward-based weight is more general,
and is amenable to scenarios where counting frequency is
difficult. We treat the instant reward ri for the i-th sample
as the log of weight for sampling, i.e. we let:

wi = exp(ri),

then the probability of choosing sample i is

P (i) =
wi∑
j wj

.

Reward clipping needs to be used to avoid samples with
very large rewards suppressing all other samples.

Priority experience sampling [15] is based on the gap |δi|
between the expected Q-value and the predicted Q-value, i.e.
we let:

δi = fDQN (si, ai)−
(
ri + γ ∗max

a′
fDQN (s′i, a

′)
)
,

then

wi = |δi|+ e,

where e is a small constant to avoid zero gap. The probability
of choosing sample i is

P (i) =
wa

i∑
j w

a
j

.

The hyperparameter a is a choice of randomness of choosing
samples. Setting a = 0 degrades the sampling method to
uniform sampling.

To avoid bias towards samples with high probabilities, the
priority experience sampling uses importance weights on the
gradient g when updating parameters, i.e.

gi = gi ∗
(

1

N ∗ P (i)

)b

.

The hyperparameter b is annealed from 0 to 1 during
training.

We will compare the weighted sampling and the priority
experience sampling in later sections.

B. Choosing the encoder

Since we use the exploration-exploitation search method
with a decaying parameter ε, it is better to let the ε decay
to almost zero to see a whole picture of the training process.
However, a well-trained LSTM-DQN on Zork could take tens
of days. In order to compare encoders faster, we consider two
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Fig. 2: Evaluation results of LSTM-DQN, CNN-DQN, and
CNN-DQN with position embeddings on the egg quest of
Zork I (as defined in Section III). In this plot, CNN-based
DQNs are trained around 175 epochs, while the LSTM-DQN
is trained 14 epochs in the same amount of time. All DQNs
converge to reach a score of 25 at the end of training except the
mean-pooling CNN-DQN (blue) that jitters even after 10 hours
of training. On the contratry, the ones using a max-pooling
layer (red and green) show more stable convergence curves,
and the red curve converges fastest in half an hour using
position embeddings. The LSTM-DQN (purple) converges
after 7 hours, slower than the max-pooling CNN-DQNs.
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Fig. 3: Evaluation results of LSTM-DQN, CNN-DQN, and
CNN-DQN with position embeddings on the troll quest of
Zork I. In this plot, CNN-DQNs are trained for 190 epochs,
while the LSTM-DQN is trained 25 epochs in the same
amount of time. The max-pooling CNN-DQNs (red and green)
converge fast with higher scores than the others, and the red
one (using position embeddings) is the fastest to converge, at
5 hours. The mean-pooling CNN-DQN (blue) shows conver-
gence at a lower score but with more jitters. The LSTM-DQN
(purple) cannot be well-trained in 45 hours of training.
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Fig. 4: Evaluation results of the troll quest with the max-
pooling CNN-DQN. The yellow curve uses weighted sampling
while the green one uses priority experience sampling. The
weighted sampling method leads to faster convergence.

of the sub-tasks that Zork comprises, following the approach
taken by [3].

Egg quest: From the beginning of the game, the player
is required to walk to a tree, climb on the tree, and take an
egg. The optimal action combination to win the task is in four
steps as shown in our egg-taking example in Section II-A. Zork
gives the player 5 points for getting the egg. To simplify the
task, we provide 11 complete actions for the agent to choose
from: eight navigation actions and three essential actions to
finish the task.

Troll quest: From the beginning of the game, the player is
required to walk into a house, take a lantern and weapons,
find a secret path to a troll room, and kill the troll. This
task is more complicated than the egg quest, and one error in
the action combination could lead to failure. Also, the player
may (stochastically) be killed by the troll, which necessitates
a game restart. The optimal action combination is “go north
| go east | open window | enter house | go west | take sword
| take lantern | move rug | open trap door | turn on lantern
| go down | go north | kill troll with sword.” We select 21
complete actions for this task. Among the 21 actions, there
are eight navigation actions.

Even though we can use the same set of hyperparameters for
the egg quest and the troll quest that we use on the complete
game, we choose to decrease these hyperparameters for a faster
experimental cycle, based on our knowledge that these two
quests are sub-tasks extracted from Zork:
• For the egg quest we use 5,000 observation steps, 50,000

replay memory size, and we decay ε from 1 to 0.0001
in 500,000 steps. Since the optimal path to solving the
egg quest is four steps, we set each episode to have a
maximum of 100 steps.

• Since the troll quest has a larger search space than the egg
quest, we double the observation steps, replay memory
size, and ε decaying steps settings used in the egg quest.

The optimal path to solving the troll quest is 13 steps, so
we set each episode to have a maximum of 150 steps.

We compare encoders based on the egg quest and the troll
quest. As shown in Figure 2 and Figure 3, we compare four
types of encoders: the LSTM encoder, the CNN encoder with
mean-pooling, the CNN-encoder with max-pooling, and the
use of position embeddings on trajectories. Both figures show
consistent results toward these four types of DQNs:

The LSTM-DQNs (purple) run many fewer epochs than
CNN-DQNs in the same amount of time. While LSTMs can
converge in the egg quest with 7 hours, they cannot be well-
trained in the troll quest within 45 hours, resulting in poor
results in the troll quest.

The mean-pooling CNN-DQNs (blue) converge with jitters,
and show an inferior result in the troll quest.

The max-pooling CNN-DQNs (red and green) show better
results in both their time to convergence and their maximum
scores than other approaches. CNN-DQNs using position
embeddings (red) show the best results on both quests.

We compare weighted sampling and the priority experience
sampling on the troll quest, as shown in Figure 4. Both
sampling methods converge to about the same score, but
weighted sampling converges more quickly. Weighted sam-
pling is suitable for single-quest games that focus on important
positive rewards.

For subsequent experiments on the complete Zork, we use
the max-pooling CNN-DQN.

C. Pooling layer and auto-attention

From Figure 2 and 3, a question arises naturally: Why does
max-pooling lead to a more stable and better result than mean-
pooling?

We find out that the max-pooling layer can be thought of
as a kind of attention mechanism [16]. With the max-pooling
DQN, we can trace back through actions to see which part
of trajectories affect the final decision most. An example of
attention tokens is shown in Figure 5 (left part) with the egg
quest. The bold texts are the top-3 important attention word-
blocks used to make the decision of choosing each action.

D. Zork results

Based on our experience with the egg quest and the troll
quest, we choose to use the max-pooling CNN-DQN frame-
work to train agents on the complete Zork. Results are shown
in Figure 6. Our base encoder (blue) shows bad results for
Zork. In 2,000,000 steps of training, there is no evaluation
result higher than 50 points, which means for each run, at best
we score 5 points for finishing the egg quest. The evaluation
result of the blue curve shows that our agent cannot explore
Zork beyond the egg quest part.

Zork is a multi-quest game, which means there are multiple
distinct trajectories needed to score points. It is important to
use priority experience sampling to train an agent on Zork,
otherwise the agent tends to converge to one of the local
maxima—the egg quest part in our experiment—instead of
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Fig. 5: Pseudo-attention via max pooling. For each action chosen (center column), we show the three most important context
spans relevant to this decision, both with unmodified context (left) and dependency tree-ordered context (right). Importance is
determined by following a chain of max-pooling decisions over convolutional filters. The weight of arrows shows the relative
importance of each token set. Shadow areas show dependency trees, and bold texts are used by convolutional filters.
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Fig. 6: Evaluation results on Zork. The blue curve shows the
result of using our base encoder: max-pooling CNN-DQN with
weighted sampling. With the use of priority experience sam-
pling we get the green curve. The red curve further improves
the performance over priority experience by adding position
embeddings. Finally, we use dependency parser reordering on
top of priority experience to get the purple curve. The training
process of two million steps of base encoder finishes in 22
hours.

exploring more rooms of the game, as shown in Figure 6
comparing the blue curve with the green one.

Furthermore, we apply position embeddings on trajectories
as described when playing the egg quest and the troll quest,
yielding the red curve with a stable evaluation result of 40
points for a single episode.

E. Dependency parser reordering

The CNN encoder, though running a magnitude order faster
than the LSTM, encodes local blocks of tokens, while the
LSTM encodes a whole sentence. The fact that local blocks
are likely to be related is ubiquitous in the domain of image
process, but not in natural language processing. In fact, a
token and its syntactic dependencies (e.g. a verb and its
descriptive adverbs) could appear many words apart in a
sentence. Consider the example sentence: you are facing the
north side of a white house. The subject of the sentence could
be (notice the bold tokens) you are facing the north side of a
white house. The token side is far from other main tokens.

Instead of using convolutional filters on trajectories directly,
we use the Stanford dependency parser [17] to reorder each
trajectory so that related tokens are right beside each other.
Dependency parsers rearrange tokens of a sentence into a tree,
with the subject token as the root (R), and its modifier tokens
as children (C). Children of the root can themselves be roots
that have children, and so on, recursively. Take the sentence



you are facing the north side of a white house as an example,
three subtrees would be generated as

1) facing (R) you (C) are (C) side (C);
2) side (R) the (C) north (C) house (C);
3) house (R) of (C) a (C) white (C).
Reading the subtrees in a breadth-first way, the three sub-

trees result in three reordered sub-sentences: facing you are
side, side the north house, and house of a white. To avoid
size-N convolutional filters striding across boundaries, we
add N − 1 padding tokens among them. E.g. with padding
token “O” for size-3 convolutional filters, we add two padding
tokens:

facing you are side O O side the north house O O house of
a white

In this way, size-3 convolutional filters cannot stride across
each meaningful block.

The result of using a dependency parser reordering is shown
in Figure 6 (purple curve). With dependency parser reordering,
the trained agent can converge in around 1.2 million steps of
training, which is faster by half a million steps than the red
curve.

F. Repeated bad tries

We observe that agents tend to repeat themselves, as has
also been observed in natural language dialogue generation
work [18]. Agents tend to ‘get stuck in a place’ and repeat
the same action, e.g. “go west | you need a machete to go
west | go west | you need a machete to go west | go west |
you need a machete to go west,” and so on. These repeated
tries with no positive reward we call repeated bad tries. We
determine that trained agents tend to get stuck in areas without
short- or long-term positive rewards from those states.

In our experiment with Zork, we find out that out of
2,075,356 training steps, there are 181,209 (8.73%) repeated
bad tries. This behavior gives us the intuition to add an
accumulative negative reward on repeated bad samples as a
corrective method. In our experiments, we add a negative
reward −0.1 if we see a repeated sample with a negative
reward, and we accumulate the penalty if we immediately see
the bad sample again.

With the repeated penalty, we can reduce the number of
repetitions to 3.51%; out of 1,596,224 training steps, there are
56,058 repeated bad tries. Compared to using repeated penalty
with the previous method (Figure 7, top, yellow curve), the
agent trained with repeated penalty converges much faster, in
about half a million training steps. The distribution of repeated
bad tries in each training process is plotted in Figure 8. We
also compare using repeated penalty with dependency parser
reordering, see Figure 7 (bottom). The benefit is additive; in-
corporating a repeated penalty can also make the convergence
with dependency parser reordering faster, in a quarter million
steps.

V. RELATED WORK

Several works [2], [4], [7]–[9], [11], [18] also build agents
for text-based games based on the DQN approach designed for
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Fig. 7: Evaluation results of training CNN-based DQN with
repeated penalty (green) VS without repeated penalty (yel-
low). Both figures use a max-pooling CNN-DQN with po-
sition embeddings, however the bottom figure also includes
dependency-based reordering (Section IV-E).
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Fig. 8: Repeated bad tries in the training process, comparing
no repeated penalty (yellow) VS with repeated penalty (green).
The x-axis is episode of training, the y-axis is the number of
repeated bad tries appearing in each episode. The model used
is a max-pooling CNN-DQN with position embeddings.



action video games [1]. One key consideration when learning
to play text-based games is how to represent game states.
Instead of using trajectories, [2], [3] use different methods
to represent states. Some games allow the use of the special
actions look and inventory to describe the current environment
and the player’s belongings, and use the combination of the
two instead of the trajectory as states. Our method is more
generalized, and avoids the use of look and inventory at every
step, which are extra steps that, in certain games (e.g. games
with fighting), could lead to a dead state.

Text-based games have a much larger action space to
explore than video games of the type evaluated previously
[1], which means that the naive application of the DQN leads
to slow or even failing convergence. To reduce the action
space, action elimination methods that use both reinforcement
learning and NLP-related motivation have been applied. [3]
use action elimination DQN framework with mathematical
bounds to remove unlikely actions, an orthogonal improvement
to ours that could be incorporated in future work. [2] explore
affordance by using Word2Vec [19] to generate reasonable
actions from words, learning, e.g., that eat apple is more
reasonable than eat wheel.

However, previous works that attempt to play Zork can
only finish a very small portion of the game, far from that
achievable by human players. [3] use the max-pooling CNN-
DQN but without position embeddings. Our Zork evaluation
result is stable at a score of 40 in one million steps, compared
to [3], we get a score of 40 without using the action elimination
DQN framework and compared to [7], that use the LSTM-
DQN framework without the action elimination method, we
have a huge performance gain. The generalized method of
reward shaping is important for games with multiple sub-
quests. [20] use random network distillation to change the
instant reward and get improved results on several hard Atari
games that require extra exploration.

VI. CONCLUSION

By analyzing how the contexts of text-based games are
used by our learning approaches, we find that agents make
better decisions when they can learn to pay attention to a
comprehensible chunk of context. The CNN-DQN with a
max-pooling layer is the right tool to reveal the attention
information, combining flexibility and speed. However, since
linear context is not always a logical chunk of information,
dependency parsing gives the CNN the ability to attend focus
on syntactically valid chunks. Our trained agent on Zork can
reach the state-of-the-art scores in 10 hours of training.
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