【2023最新版】PyCharm使用 Jupyter Notebook详解(在conda环境里安装Jupyter~PyCharm使用conda环境~Jupyter自启动)

文章详细描述了如何在PyCharm中配置和使用JupyterNotebook,包括安装Anaconda、PyCharm,创建和管理conda虚拟环境,以及在遇到错误时的解决方案,如安装Jupyter的报错处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

  • 一、准备工作
    • 1. 安装Anaconda、PyCharm
    • 2. Jupyter官网
    • 3. Jupyter常用命令
  • 二、PyCharm配置 Jupyter Notebook
  • 三、PyCharm使用Jupyter Notebook
    • 0. 源起
    • 1. 创建虚拟环境
      • 创建conda虚拟环境
      • 更新conda(请忽略)
        • 中途停止的下场
    • 2. PyCharm使用conda环境
    • 3. Jupyter自启动
      • 运行.ipynb文件
      • 安装Jupyter(PyCharm自动安装)
        • 报错1. conda错乱
      • 安装Jupyter(命令行)
        • 报错2. python最新版安装失败
      • 重运行.ipynb文件

一、准备工作

1. 安装Anaconda、PyCharm

  win11 安装 Anaconda(2022.10)+pycharm(2022.3/2023.1.4)+配置虚拟环境
  Jupyter 是 Anaconda 发行版的一部分,并默认随 Anaconda 一起安装。 (也可以独立安装和使用,无需依赖 Anaconda)

pip install jupyter notebook
conda install jupyter

2. Jupyter官网

  Jupyter官网

3. Jupyter常用命令

Jupyter
usage: jupyter [-h] [--version] [--config-dir] [--data-dir] [--runtime-dir] [--paths] [--json] [--debug] [subcommand]
 
Jupyter: Interactive Computing
 
positional arguments:
  subcommand     the subcommand to launch
 
optional arguments:
  -h, --help     show this help message and exit
  --version      show the versions of core jupyter packages and exit
  --config-dir   show Jupyter config dir
  --data-dir     show Jupyter data dir
  --runtime-dir  show Jupyter runtime dir
  --paths        show all Jupyter paths. Add --json for machine-readable format.
  --json         output paths as machine-readable json
  --debug        output debug information about paths
 
Available subcommands: bundlerextension console dejavu events execute kernel kernelspec lab labextension labhub
migrate nbclassic nbconvert nbextension notebook qtconsole run script server serverextension troubleshoot trust
 
Please specify a subcommand or one of the optional arguments.

二、PyCharm配置 Jupyter Notebook

  前文介绍了PyCharm配置Anaconda中的Jupyter:
【2023最新版】PyCharm配置 Jupyter Notebook详解(启动、设置密码、测试等)

三、PyCharm使用Jupyter Notebook

  本文将介绍了PyCharm使用conda虚拟环境中的Jupyter

0. 源起

在这里插入图片描述

1. 创建虚拟环境

conda create -n csdn python==3.10

注意,python最新版可能无法使用conda命令安装Jupyter,建议不要安装最新版

创建conda虚拟环境

在这里插入图片描述

Proceed ([y]/n)?

  敲enter直接安装即可即可

conda activate csdn
conda list

在这里插入图片描述

  • 以上过程使用了如下命令,即安装了最新版python
conda create -n csdn python
  • 实践表明,目前python3.12无法使用conda命令安装Jupyter(个人更倾向于使用conda安装,未测试pip命令)

更新conda(请忽略)

注意:如果更新千万千万千万不要中途停止!!!,个人建议不要更新
  创建conda虚拟环境时,如果提示:

Collecting package metadata (current_repodata.json): done
Solving environment: done


==> WARNING: A newer version of conda exists. <==
  current version: 23.7.2
  latest version: 23.9.0

Please update conda by running

    $ conda update -n base -c defaults conda

Or to minimize the number of packages updated during conda update use

     conda install conda=23.9.0

  当前使用的Conda版本为23.7.2,而最新版本是23.9.0。建议你通过运行以下命令来更新Conda:

conda update -n base -c defaults conda

  或者,如果你想在更新Conda时减少更新的软件包数量,可以使用以下命令:

conda install conda=23.9.0
中途停止的下场

在这里插入图片描述
  conda错乱了……

2. PyCharm使用conda环境

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
  结束上述操作后,环境变为csdn
在这里插入图片描述

3. Jupyter自启动

运行.ipynb文件

在这里插入图片描述

  尚未安装Jupyter~那肯定会运行失败,如图:

在这里插入图片描述

安装Jupyter(PyCharm自动安装)

  上述添加canda环境操作结束后,重启PyCharm,自动检测出Jupyter未安装,点击右侧安装Jupyter即可
在这里插入图片描述
  等待安装结束即可:
在这里插入图片描述

报错1. conda错乱

  更新conda中途停止的下场:
在这里插入图片描述

conda activate E:\Software\anaconda3\envs\csdn
E:\Software\anaconda3\condabin\conda.bat install -p E:/Software/anaconda3/envs/csdn jupyter -y

安装Jupyter(命令行)

报错2. python最新版安装失败

  额……python最新版3.12使用conda命令安装时等待n久,此题无解,不要使用最新版python
(可以尝试pip安装,这里未进行测试)

Collecting package metadata (current_repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: \

conda create -n csdn1 python==3.10
conda activate csdn1
conda install jupyter

在这里插入图片描述

重运行.ipynb文件

在这里插入图片描述
successful

<think>好的,用户的问题是关于在Jupyter Notebook中创建和选择Conda环境,并将其配置到PyCharm中的方法。首先,我需要整理一下相关的步骤,确保覆盖用户的需求,同时结合提供的引用内容来确保准确性。 首先,用户提到的是如何在Jupyter中创建和选择Conda环境。根据引用3中的信息,创建虚拟环境后,需要安装ipykernel,并将环境添加到Jupyter的内核中。步骤大致是:创建环境、激活环境安装ipykernel、注册内核。这部分需要详细说明,可能还要注意顺序,比如先创建内核再安装pytorch,否则可能出问题,如引用3提到的顺序问题。 接下来是关于PyCharm的集成。用户需要知道如何在PyCharm中配置这个Conda环境。根据引用4和引用5,PyCharm需要添加现有的Conda环境作为解释器。具体步骤可能包括在设置中找到Python解释器,选择Conda环境的可执行文件路径,比如在envs目录下的环境中的python.exe。此外,引用4提到如果在PyCharm中切换环境时出现Jupyter模块缺失的错误,可能需要在该环境安装jupyter。 然后,用户可能遇到的一些常见问题,比如Jupyter服务器无法启动,可能是因为环境没有安装jupyter,这时候需要在Conda环境安装jupyter,如引用2中的pip install jupyter或者用conda安装。同时,引用4的错误提示也说明了这一点,所以解决方法是安装jupyter到该环境。 另外,引用1和引用2提到了在PyCharm使用Jupyter Notebook的配置,可能需要设置Jupyter服务器,指定Conda环境的Python解释器。这部分需要指导用户在PyCharmJupyter设置中选择正确的解释器路径,或者安装Jupyter支持。 还需要考虑用户在创建Conda环境时的步骤是否正确,比如是否使用conda create命令,以及激活环境。引用5提到使用conda命令创建虚拟环境,并安装必要的库,比如numpy,这可能是一个例子,但用户的问题是关于JupyterPyCharm的集成,所以可能需要更具体的指导。 总结步骤应该是: 1. 创建Conda环境conda create -n env_name python=x.x 2. 激活环境安装ipykernel:conda activate env_name,然后安装ipykernel,并添加到Jupyter内核。 3. 在Jupyter Notebook中选择该环境作为内核。 4. 在PyCharm中,将项目解释器设置为该Conda环境。 5. 在PyCharm使用Jupyter Notebook时,确保环境安装jupyter,否则安装。 需要注意的问题包括:内核注册顺序、环境是否安装jupyterPyCharm中的解释器配置是否正确。同时,引用中的错误案例需要作为注意事项提醒用户,比如安装内核后再安装其他包,避免找不到模块的问题。 可能还需要提到如何在PyCharm中创建Jupyter Notebook文件,并关联到Conda环境,这涉及到Jupyter服务器的设置,可能需要指定该环境的Python路径,如引用4所述的问题,需要安装jupyter模块到该环境。 最后,生成相关问题需要考虑用户可能进一步的问题,比如环境切换失败、内核不显示、PyCharm集成出错等,根据引用中的错误示例来设计相关问题。</think>### 在Jupyter Notebook中创建和选择Conda环境并与PyCharm集成 #### 一、Jupyter Notebook中创建并选择Conda环境 1. **创建Conda虚拟环境** 使用以下命令创建指定Python版本的虚拟环境: ```bash conda create -n myenv python=3.9 ``` 激活环境: ```bash conda activate myenv ``` 2. **将环境注册到Jupyter内核** - 安装`ipykernel`包: ```bash conda install ipykernel ``` - 将环境添加到Jupyter内核列表: ```bash python -m ipykernel install --user --name=myenv ``` 完成后,在Jupyter Notebook的**Kernel > Change Kernel**中即可选择该环境[^3]。 #### 二、PyCharm集成Conda环境 1. **配置PyCharm使用Conda环境** - 打开PyCharm,进入**File > Settings > Project: [项目名] > Python Interpreter**。 - 点击右上角齿轮图标,选择**Add Interpreter > Conda Environment**。 - 指定Conda环境路径(默认在`C:\Users\用户名\.conda\envs\myenv`),选择`python.exe`作为解释器[^3][^5]。 2. **解决Jupyter Notebook环境缺失问题** 若在PyCharm中运行`.ipynb`文件时提示`No module named jupyter`,需在Conda环境安装Jupyter: ```bash conda activate myenv conda install jupyter ``` 或通过PyCharm自动安装(打开`.ipynb`文件时会提示安装依赖)[^4]。 #### 三、验证配置 1. **在Jupyter中验证** 新建Notebook并选择`myenv`内核,执行: ```python import sys print(sys.executable) ``` 输出应为`myenv`环境的Python路径。 2. **在PyCharm中验证** 创建或打开`.ipynb`文件,确保右上角解释器显示为`myenv`。执行代码若报错`ModuleNotFoundError`,需在Conda环境中手动安装缺失包。 --- ### 注意事项 - **内核注册顺序**:若需使用深度学习框架(如PyTorch),**先注册内核再安装框架**,否则Jupyter可能无法识别环境中的包。 - **路径冲突**:避免使用中文路径或空格,否则可能导致Conda环境加载失败[^2]。 - **PyCharm版本**:专业版支持更完整的Jupyter集成功能,社区版需手动配置[^3]。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QomolangmaH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值