在OpenVINO™ 精度检查器工具中添加DIoU-NMS 指标,以获取YOLO v4 的正确mAP

本文介绍如何在OpenVINO™环境下集成DIoU-NMS,优化Yolov4模型精度,并通过实例演示如何使用DIoU-NMS检查yolov4-tf模型。DIoU-NMS的引入显著提高了模型性能,尤其在INT8模型转换中的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.0简介

Yolov4 模型于2020 年中期推出,它的问世对深度学习目标检测领域产生了深远影响。为取得成功,Yolov4 集成了许多一流的技术,其中包括改进的非极大值抑制(NMS) 算法,该算法使用距离交并比(DIoU) 而非交并比(IoU)。DIoU 总结了边界框回归中的两个几何因素(即重叠区域和中心点距离),从而加快了收敛速度并提升了性能。

在本白皮书中,DIoU-NMS 函数将被添加到OpenVINO™ 精度检查器工具中,以用于计算yolov4 的正确预期精度。尽管DIoU-NMS 可帮助大幅提升精度,但它也可以与训练后优化工具包(pot) 一起使用,以生成优化的INT8 模型。

2.0设置环境

系统环境–设置OpenVINO™ 2021.2

Ubuntu 18.04 或Ubuntu 20.04。

3.0添加Diou-nms 的步骤

3.1.安装精度检查器工具

按照openvinotookit_open_model_zoo指南进行安装。

3.2.编辑

“/opt/intel/openvino_2021/deployment_tools/open_model_zoo/tools/accuracy_checker/accuracy_checker/postproces sor/nms.py”

将以下代码添加到文件中

4.0用DIoU-NMS 检查yolo-v4-tf 模型的精度

4.1.下载和转换yolo-v4-tf 模型

4.2.准备数据集和yml 文件

4.2.1.下载数据集

4.2.2.复制和编辑“accuracy-check.yml”

复制“accuracy-check.ym

编辑“accuracy-check.yml”

1.标注出第2-60 行

2.在第65 行添加以下内容

3.从以下位置开始编辑第94 行

用DIoU-NMS 检查yolo-v4-tf 模型的精度

4.3.运行精度检查器工具,计算yolo-v4-tf 的统计精度

如果上述设置和修改正确,请使用以下命令获取精度结果。

mAP 结果:

结果证实DIoU 的mAP 比IoU 更准确。尽管使用训练后优化工具包(pot) 将模型转换为INT8 时只有微小的差异,但是这些差异可能会影响转换后的INT8 模型的性能。因此,实现面向OpenVINO 工具™(精度检查器和pot)的DIoU-NMS 函数非常重要。

5.0参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值