OpenCV4.x图像处理实例-社交距离检测

本文介绍了使用OpenCV4.4.0进行社交距离检测的方法,包括视频预处理、行人检测、距离计算和结果显示。通过CLAHE增强对比度,结合深度学习的行人检测模型,计算行人之间的距离并进行分类,辅助防疫。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

社交距离检测

1. 前言

在新冠疫情还未结束的情况下,对社交场合行人的社交检测,并发出警告,是一种防疫的辅助手段。本文介绍一种简单的行人社交距离检测方法。

OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。 [1] 它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。目前最新的版本为4.4.0。本实例基于最新版本实现。

2. 社交距离检测描述

社交距离检测描述主要由以下步骤组成:

  • 1.对视频流进行预处理。这里通过对比度受限的自适应直方图均衡化算法(CLAHE)对视频流进行预处理,用来优化行人检测结果。
  • 2.使用深度学习方法,将行人检测出来,并计算行人的位置。
  • 3.计算两个行人之间的距离。首先计算行人的边界框(Bounding Box)确认其质心位置,然后再计算两个质心之间的像素距离,最后将像素距离转换成以米计量单位距离。
  • 4.将计算结果按不同的距离范围分类。
  • 5.显示检测结果

对比度受限的自适应直方图均衡化可以直接使用cv2.createCLAHE函数实现

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉与物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值