数字图像处理与Python实现-Scikit-Image-图像滤波(三)

本文介绍了Scikit-Image库中的分水岭滤波器,包括Frangi、Hessian、Meijering和Sato tubeness滤波器,用于检测连续脊,如船只、皱纹和河流。此外,还讨论了Gabor、高斯、局部中值、Unsharp Masking和维纳滤波器在图像处理中的应用和参数说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3、分水岭(Ridge)相关滤波器

3.1 Frangi滤波器

Frangi滤波器可用于检测连续脊,例如 船只、皱纹、河流。 它可用于计算包含此类对象的整个图像的比例。其原型如下:

skimage.filters.frangi(image, sigmas=range(1, 10, 2), scale_range=None, scale_step=None, alpha=0.5, beta=0.5, gamma=15, black_ridges=True, mode=‘reflect’, cval=0)

参数说明如下:

  • image:(N, M[, P]) ndarray。输入图像
  • sigmas:float数据类型序列,可选。用作滤波器尺,即 np.arange(scale_range[0], scale_range[1], scale_step)
  • scale_range:float类型2-元组, 可选。参数sigma 的范围。
  • scale_step:float, 可选。sigma 之间的步长。
  • alpha:float, 可选。Frangi 校正常数,用于调整滤波器对偏离板状结构的灵敏度。
  • beta
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉与物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值