【杂谈】-AI拟人化:解析法学硕士与智能体的思维机制

AI拟人化:解析法学硕士与智能体的思维机制


当下,法学硕士与智能体在学习、剖析及决策过程中所展现的方式,正悄然模糊着算法“思维”与人类思维之间的明晰界限。二者依托的方法已然对人类认知过程进行了精妙模拟,且其训练规模远超人类经验的范畴。这一现象引发了深刻的思考:我们究竟是在打造一种用以拓展自身能力边界的工具,还是在孕育一种后果尚难精准预判的新型思维形态?

1、解析模型的思维运作机制

明确区分大语言模型(LLM)与智能体的概念具有至关重要的意义。若将计算机作一类比,LLM恰似计算机中的某个关键组件,如处理器;而智能体则如同整个系统,宛如一块连接着各类模块的“主板”,涵盖内存、显卡以及网络等。同样地,智能体是一个高度复杂的系统,它能够容纳一个或多个LLM,并配备决策机制以及用于与外部环境交互的工具。

聚焦于单个LLM的工作机理,其本质可归结为模式匹配。然而,当智能体将多个LLM进行有效连接时,便可视作其在“思考”,尽管这一过程依旧建立在模式基础之上。智能体构建起了模型间交互的逻辑架构:例如,一个LLM负责对任务进行分析,并依据分析结果判定另一个LLM应执行的具体操作。

人类的思维方式与此存在相似之处:我们依赖长期积累的知识与模式,在恰当的时机对其进行筛选、处理,进而得出结论,这一过程被称为推理。

以ChatGPT为例,它与人类一样具备两种类型的记忆——短期记忆与长期记忆。但二者在记忆访问方式上存在显著差异,人类的记忆访问更为复杂,且并非总是遵循线性顺序。

短期记忆指的是当前正在处理的信息。对于个人而言,可能是五分钟前说过的话语,人们或许记得,也可能遗忘。而GPT则会始终考量其“上下文窗口”内的所有内容,无法跳过或忽视这些数据。

人类的长期记忆由并非时刻活跃的记忆构成,它们仅在特定的触发条件下才会浮现,如童年回忆、创伤经历,或是与心理学家交流的场景。GPT遵循类似的逻辑:除非被特别激活,否则不会主动“回忆”信息。例如,“永远不要再问我这个问题”或“永远正式称呼我”这类指令会被存储在长期记忆中,并在每次会话中得以应用。

长期记忆的另一个典型例证是已保存的文档。假设用户向GPT上传了一条开展市场调研的指令,模型虽能将其存储在内存中,但这并不意味着它会在回答每个问题时都引用该文档。若用户提问:“你能用手电筒照月亮吗?”GPT会忽略这条指令。但如果问题的表述包含与文档文本相匹配的关键词,模型便能“回忆”起相关文档内容。

这种记忆机制是通过检索增强生成(RAG)技术实现的,该技术借助向量数据库,使模型能够根据相关线索触发并访问存储的信息。由此可见,模型确实拥有记忆功能,但其运行方式与人类记忆截然不同,呈现出一种更为形式化的逻辑特征。

2、人工智能对话体验的双重性:治愈与冷漠并存

现代语言模型体量庞大,存储着海量的数据、知识与语境信息。这些信息被组织成所谓的“集群”,即围绕特定主题和语义领域形成的集合。模型的训练数据来源广泛,从小说、科学文章到YouTube评论,无所不包。

当用户与人工智能进行交互时,用户的查询(提示)会引导模型定位到特定的集群。例如,若用户输入:“你是一位拥有20年经验的纽约房地产律师,请帮我买一套公寓”,模型会同步激活多个相关集群,包括“律师”“纽约”“房地产”等,从而给出一个连贯、相关且贴合实际需求的回复,仿佛用户真的在咨询一位经验丰富的专业人士。

倘若查询涉及更为个人化或哲学性的话题,如自我成长或情感问题,模型会“转向”其他相关集群,如心理学、哲学或心灵修行等领域。在这种情况下,模型的回答可能会出人意料地充满人性化关怀,甚至具有治愈效果。

然而,由于用户措辞过于笼统或模糊,模型可能会在其集群结构中“迷失方向”,进而给出默认的、形式化的、冷漠且缺乏情感色彩的回应。因此,人工智能回应的风格与深度,在很大程度上取决于用户通过提示将其引导至哪个集群。

3、模型训练的哲学理念与强化学习(RLHF)实践

人工智能采用了多样化的学习策略,与其称之为哲学,不如将其视为一种战略选择。经典的学习方法是监督学习,即向模型提供问题及其对应的正确答案。模型通过观察哪些答案是被认可的,从而学习并在未来重现类似的解决方案。

另一种重要的方法是强化学习(RLHF)。这是一种独特的学习风格:模型尝试执行某些操作,并根据操作的成功程度获得“奖励”,随后据此调整自身行为。随着时间的推移,模型逐渐形成有效的策略。

可以将强化学习类比为将原材料加工成成品的过程。为了打造出易于使用的模型,需要进行大量的人工反馈工作。想象一下,有人向你展示一个物体,但不直接告知其名称。你开始猜测:“它是烟盒吗?还是卡夹?”对方仅提供一些模糊的提示,如“靠近一点”“远一点”“60%是”。经过数百次这样的迭代后,你最终猜出:“啊,这是一个钱包。”

法学硕士(LLM)正是采用这种方式进行训练的。人类标注员、专业领域的专家会对模型的答案进行评估,判断其优劣并给予评分。像Keymakr这样专注于高质量数据标注和验证的公司,在这一过程中发挥着举足轻重的作用。此外,普通用户的反馈也是重要的数据来源,包括点赞、投诉和各种反应。模型会解读这些信号,逐渐形成稳定的行为模式。

4、模型训练的实践案例剖析

一个极具代表性的案例是OpenAI利用强化学习在“捉迷藏”游戏中训练智能体的实验。实验设置了两支队伍:“寻找者”(红色)和“隐藏者”(蓝色)。游戏规则简单明了:如果寻找者抓住了隐藏者,得一分;反之,扣一分。初始阶段,智能体仅具备基本的身体能力,如奔跑和跳跃,没有任何预设的策略。

起初,寻找者的行动杂乱无章,抓住对手纯属偶然。但在经历了数百万次迭代后,它们的行为发生了显著进化。躲藏者开始巧妙地利用周围环境,通过堵住门、设置障碍等方式来躲避追捕。这些技能并非预先编程设定,而是通过不断尝试并获得成功后的奖励机制自发产生的。

作为回应,寻找者开始充分发挥自身原本就具备但此前未受重视的能力——跳跃。在经历多次失败后,随机运用跳跃的能力展现出了战术价值。随后,躲藏者进一步优化防御策略,移除寻找者视线范围内的物体,并搭建更为稳固的庇护所。

该实验充分证明,经过数十亿次的反复试验、奖励与惩罚,复杂的合作行为能够在无需开发人员直接干预的情况下自然形成。更为惊人的是,即便没有专门的编程通信机制,智能体之间也能实现协调行动,这仅仅是因为团队合作被证明是一种更有效的策略。

大型语言模型的训练亦是如此。由于现实世界中存在无数种情况和极高的可变性,编写所有场景的脚本是不现实的。因此,我们并不试图教模型固定的规则,而是教会它如何自主学习。这正是强化学习(RLHF)的价值所在。没有RLHF,LLM和智能体充其量只是一个静态的文本库;而有了RLHF,它们能够成为能够适应环境变化、自我修正,并本质上持续进化的对话伙伴。

5、展望未来:人工智能的发展趋势

必须清醒认识到,我们今天所看到的人工智能技术,尚处于初级阶段,仅仅是一个原型,而非最简可行产品(MVP)。真正的变革并非局限于帮助人们撰写优美的信件或将文本翻译成法语,这些只是微不足道的应用。真正的发展方向在于实现微任务和常规流程的自动化,从而使人类能够将精力集中在真正富有创造力的智力活动上,或是享受闲暇时光。

真正的创新焦点在于智能体的开发,即那些能够独立思考、自主行动并做出决策的系统。这正是OpenAI、谷歌、Meta等科技巨头当前全力投入的研究领域。大型语言模型只是基础,真正的未来在于训练智能体,使其能够在动态变化的世界中生存,接收反馈并灵活适应环境的变化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉与物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值