#coding:utf-8
import numpy as np
import argparse
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=False,default='datas/images/people.jpg',
help="path to input image")
# ap.add_argument("-p", "--prototxt", required=True,
# help="path to Caffe 'deploy' prototxt file")
# ap.add_argument("-m", "--model", required=True,
# help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CL