OpenCV3与深度学习实例:使用MobileNet SSD检测物体

本文介绍了如何利用OpenCV3和深度学习模型MobileNet SSD进行物体检测。通过实例展示了从加载模型到应用模型进行实时物体检测的完整过程,详细解释了关键步骤和技术要点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

#coding:utf-8
import numpy as np
import argparse
import cv2

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=False,default='datas/images/people.jpg',
	help="path to input image")
# ap.add_argument("-p", "--prototxt", required=True,
# 	help="path to Caffe 'deploy' prototxt file")
# ap.add_argument("-m", "--model", required=True,
# 	help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
	help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CL
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉与物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值