深度学习与图像处理之:人像背景虚化

本文通过使用DeepLabV3模型进行图像分割,提取人像,并对背景进行模糊化处理,最终将人像与模糊背景重新合成,达到人像背景虚化的效果。虽然效果有待优化,但已实现基本功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单实现思路:

  1. 对图像内容进行分割,提取人像
  2. 对图像背景进行模糊化处理
  3. 将人像和背景重新合成

在这里,使用DeepLabV3模型对图像内容进行分割并提取人像,实现的代码如下:

import os
from io import BytesIO
import tarfile
import tempfile
from six.moves import urllib
 
from matplotlib import gridspec
from matplotlib import pyplot as plt
import numpy as np
from PIL import Image
 
# 在Tensorflow 2.x中使用Tensorflow 1.x兼容
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import cv2
 
class DeepLabModel(object):
    """Class to load deeplab model and run inference."""
 
    INPUT_TENSOR_NAME = 'ImageTensor:0'
    OUTPUT_TENSOR_NAME = 'SemanticPredictions:0'
    INPUT_SIZE = 513
    FROZEN_GRAPH_NAME = 'frozen_inference_graph'
 
    def __init__(self, tarball_path):
      
### 人像模式虚化效果的实现原理 #### 1. AI模型处理 在现代智能手机和其他设备上的人像模式中,通常会采用预训练好的深度学习模型来处理图像。这些模型能够识别并分割前景中的主体(通常是人物),并将背景其他部分区分开来。通过这种方式,可以精确地保留主题的同时模糊掉周围的环境,从而创造出具有艺术感的照片[^1]。 #### 2. 虚化技术分类 为了获得自然逼真的散景效果,不同的算法和技术被应用于模拟相机镜头产生的浅景深现象: - **基于AI人像抠图的距离平面虚化**:此方法先利用人工智能技术准确提取出照片里的人物轮廓,再根据不同区域离摄像头远近的关系来进行不同程度上的高斯模糊或其他形式的滤镜处理。 - **AI深度估计景深虚化**:该方案不仅考虑到了物体间的相对位置关系,还借助于机器学习预测每一点的空间坐标信息,进而更精细地控制各个层次之间的过渡平滑度,适用于复杂场景下的全方位美化需求。 - **组合策略——AI人像抠图加深度估计**:综合上述两种手段的优势,在保证边缘清晰锐利的前提下进一步增强整体画面质感。 - **端到端解决方案**:一些先进的框架可以直接从原始RGB输入生成带有适当虚化的最终输出,无需中间步骤的手动干预或额外计算资源消耗[^2]。 #### 3. 测距机制支持 除了软件层面的努力之外,硬件配置同样重要。例如D40系列传感器配合Intel RealSense SDK提供了强大的三维感知能力,它结合了红外反射测距技术和双目立体视觉原理,能够在较短的时间内获取高质量的深度地图用于后续加工环节[^3]。 ```python import numpy as np from PIL import Image, ImageFilter def apply_bokeh_effect(image_path): img = Image.open(image_path).convert('RGBA') mask = get_person_mask(img) # 假设有一个函数可以从图片中得到人的mask blurred_background = img.filter(ImageFilter.GaussianBlur(radius=15)) foreground = Image.new('RGBA', img.size) for y in range(img.height): for x in range(img.width): if mask[y][x]: foreground.putpixel((x,y),img.getpixel((x,y))) result = Image.alpha_composite(blurred_background.convert('RGBA'),foreground) return result ``` 这段Python代码展示了如何应用简单的高斯模糊作为背景虚化的效果,并保持前景不变。实际产品级的应用程序可能会更加复杂,涉及到更多高级功能和服务集成。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉与物联智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值