LLM:在AutoDL上进行Vicuna 7B模型简单部署体验

本文介绍如何部署开源的大语言模型Vicuna 7B,包括权重文件的保存与上传、环境搭建、源码安装及使用方法。适用于希望在单张GPU上运行接近ChatGPT性能的语言模型的研究者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

更多文章推荐

0、引入

随着ChatGPT的火热,科技公司们各显神通,针对大语言模型LLM通常需要极大的算力支持,且没有开源,阻碍了进一步的研究和应用落地。受 Meta LLaMA 和 Stanford Alpaca 项目的启发,来自加州大学伯克利分校、CMU、斯坦福大学和加州大学圣地亚哥分校的成员,共同推出了一个 Vicuna-13B 开源大模型。

根据论文显示,其Vicuna-13B可以达到ChatGPT/Bard 90%以上水平,并且开源,并且Vicuna-7B模型可以在单卡上面运行(github说7B需要16GB的现存,亲测在3090上面可以运行,速度挺快)。

目前Vicuna开源了模型权重以供大家进行研究和微调,本文受限于算力仅尝试运行7B模型。

本文大概的流程是:首先将权重文件保存到阿里云盘中(12GB),然后在autodl云服务器中开一台3090,使用autodl提供的离线下载将阿里云盘的权重下载到3090中,然后下载Vicuna的代码进行编译安装,就可以执行测试了。

章节1-5为具体部署方法,如果觉得太麻烦,可以直接看章节6:直接使用我的镜像立即开启人机对话,通过加载镜像后两行代码就可以开启对话

1、保存权重文件到阿里云盘

官方没有直接放出权重文件,而是需要通过增量和LLM自己进行转换,转换7B的权重需要30GB的RAM才可以。所以这里直接分享转换后的权重下载即可。

vicuna-7b-小羊驼 点击链接保存到自己云盘(note:不需要下载)

2、部署环境

Vicuna最小的7B模型也需要14GB的显存,(穷,没有)所以使用autodl租一台3090,也便宜一般1~1.5一小时。选择一台3090,它拥有24GB显存,运行7B模型已经够了。

在创建时选择框架:Pytorch1.10+Py3.8+CUDA11.3
在这里插入图片描述

3、上传权重文件到3090

该部分在autodl的帮助下,将阿里云盘权重直接下载到3090,不需要经过本机下载再上传。

当我们开启一台机器后可以看到下面的信息
在这里插入图片描述
点击“AutoPanel”进入面板,选择“公网网盘”,此时选择阿里云盘并扫码登录,就可以看到你的文件了。

找到vicuna-7b文件夹(里面就是相关权重文件),点击下载。
在这里插入图片描述

下载完成后,该模型权重就在我们3090的/root/autodl-tmp/里了,一会儿就可以直接使用。
权重文件较大,传输比较耗时,你可以点击右上角的传输任务查看进度。
在这里插入图片描述

4、下载安装源码

4.1 下载编译安装源码

首先从 v0.1.10下载“Dource code(zip)”并上传。如下如所示在1标记处可以上传文件,基本的上传进度条完成后可以在左侧看到FashChat-0.1.10.zip

然后,点击“终端”打开终端,使用命令"unzip FastChat-0.1.10.zip -d ./"进行解压,成功后可以看到FastChat-0.1.10文件夹

note:不要去主页下最新版,最新版与本文的权重不符,会有小bug。
在这里插入图片描述

4.2 安装

首先在终端进入文件夹:cd FastChat-0.1.10
在这里插入图片描述
为了方便访问从github下载,请根据自己机器的区域设置代理AutoDL帮助文档
比如我的是毕业季A去所以执行:
export http_proxy=http://10.0.0.7:12798 && export https_proxy=http://10.0.0.7:12798
在这里插入图片描述

然后依次执行:
sudo pip3 install --upgrade pip
sudo pip3 install -e .

至此一切就绪!

5、开始使用

一些配置好后,在终端中执行使用命令:
python3 -m fastchat.serve.cli --model-path ~/autodl-tmp/vicuna-7b/
等待加载chckpoint完成后,就会有提示符“Human:”就可以进行人机对话了
在这里插入图片描述

6、直接使用我的镜像立即开启人机对话

如果觉得上面的步骤太麻烦,使用我制作好的镜像,直接输入命令就可开启对话。

首先你需要获取我准备好的镜像,受限于autodl镜像分享只能通过指定id的方式,你可以在评论区留下你的autodl的ID,我分享给你。

你的id在这里查看:
在这里插入图片描述
假设你已经有了镜像,然后去租一台3090,在控制台将3090关机,从“更多”中选择“更换镜像”,选中我分享的镜像,等待重置完成。

开机后,一次执行:
cd FastChat-0.1.10
python3 -m fastchat.serve.cli --model-path vicuna-7b/
在这里插入图片描述
就可以开启对话了

Debug:可能的报错

在这里插入图片描述
上次执行使用命令占用的显存没有释放,只需要如下图关闭该终端,然后新开终端进入FastChat文件夹后再使用执行命令即可再次对话
在这里插入图片描述

### 关于OSError: Incorrect Path or Model ID 当遇到 `OSError` 报错提示路径或模型ID不正确时,通常是因为指定的文件夹路径不存在或者模型名称有误。以下是可能的原因分析以及解决方案: #### 原因一:路径配置错误 如果指定了一个不存在的目录作为模型加载路径,则会触发此异常。例如,在命令中提到的 `/root/vicuna-7b/vicuna-7b-delta-v11` 路径下如果没有实际存在的模型文件,就会抛出类似的错误。 #### 解决方法: 确认目标路径是否存在并包含完整的模型权重文件。可以通过以下方式验证路径的有效性: ```bash ls -l /root/vicuna-7b/vicuna-7b-delta-v11/ ``` 上述命令应返回该目录下的所有文件列表。如果发现路径为空或缺少必要文件(如 `.bin` 或 `.pt` 文件),则需重新下载对应版本的模型[^1]。 --- #### 原因二:虚拟环境未正常初始化 创建 Python 的 virtualenv 过程中可能出现问题,尤其是当基础解释器路径设置不当或权限不足时。这可能导致后续依赖安装失败,进而影响到模型加载逻辑。 #### 解决方法: 按照引用中的成功案例调整命令参数,并确保拥有足够的写入权限来构建新的虚拟环境。具体操作如下所示: ```bash /usr/local/python36/bin/virtualenv --always-copy ./python36env source ./python36env/bin/activate pip install torch transformers accelerate bitsandbytes ``` 以上步骤依次完成了虚拟环境建立、激活以及核心库的安装工作[^2]。 注意替换掉默认Python可执行程序的位置至当前系统可用的一个稳定版本上;另外记得检查网络连接状态以便顺利完成第三方包获取流程。 --- #### 额外建议 对于特定的大规模预训练语言模型来说,官方文档往往是最权威的信息源之一。因此强烈推荐查阅 LMSYS 维护的相关资料页面寻找更精确指导说明链接地址为 https://github.com/lm-sys/FastChat/tree/main/fastchat 。从中可以找到有关不同硬件条件下部署 Vicuña 系列变体的最佳实践指南。 ---
评论 66
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是一个对称矩阵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值