欧拉函数【模板】

本文介绍了一种直接计算欧拉函数的方法,并通过递推优化实现快速计算。此外,还提供了一个利用质数筛法预处理大量欧拉函数值的算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直接欧拉函数

int Euler(int n)  
{  
    int ret = n;  
    for(int i = 2; i*i <= n; ++i)  
    {  
        if(n % i == 0)  
        {  
            n /= i;  
            ret = ret - ret/i;  
        }  
        while(n % i == 0)  
            n /= i;  
    }  
    if(n > 1)  
        ret = ret - ret/n;  
    return ret;  
}  
递推快速求欧拉函数
int prime[100010],phi[1000010];  
bool unprime[1000010];  
__int64 sum[1000010];  
  
void Euler()  
{  
    int i,j,k = 0;  
    for(i = 2; i <= 1000000; i++)  
    {  
        if(!unprime[i])  
        {  
            prime[k++] = i;  
            phi[i] = i-1;  
        }  
        for(j = 0; j < k && prime[j]*i <= 1000000; j++)  
        {  
            unprime[prime[j] *i] = true;  
            if(i % prime[j] != 0)  
            {  
                phi[prime[j]*i] = phi[i]*(prime[j]-1);  
            }  
            else  
            {  
                phi[prime[j]*i] = phi[i]*prime[j];  
                break;  
            }  
        }  
    }  
}  



评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值