数学、特に抽象代数学において、体 K の代数的閉包(だいすうてきへいほう、英: algebraic closure)は、代数的に閉じている K の代数拡大である。数学においてたくさんある閉包のうちの1つである。 ツォルンの補題を使って、すべての体は代数的閉包をもつことと、体 K の代数的閉包は K のすべての元を固定するような同型の違いを除いてただ1つであることを証明できる。この本質的な一意性のため、an algebraic closure of K よりむしろ the algebraic closure of K と呼ばれることが多い。 体 K の代数的閉包は K の最大の代数拡大と考えることができる。このことを見るためには、次のことに注意しよう。L を K の任意の代数拡大とすると、L の代数的閉包は K の代数的閉包でもあり、したがって L は K の代数的閉包に含まれる。K の代数的閉包はまた K を含む最小の代数的閉体でもある。なぜならば、M が K を含む任意の代数的閉体であれば、K 上代数的な M の元全体は K の代数的閉包をなすからだ。 体 K の代数的閉包の濃度は、K が無限体ならば K と同じで、K が有限体ならば可算無限である。

Property Value
dbo:abstract
  • 数学、特に抽象代数学において、体 K の代数的閉包(だいすうてきへいほう、英: algebraic closure)は、代数的に閉じている K の代数拡大である。数学においてたくさんある閉包のうちの1つである。 ツォルンの補題を使って、すべての体は代数的閉包をもつことと、体 K の代数的閉包は K のすべての元を固定するような同型の違いを除いてただ1つであることを証明できる。この本質的な一意性のため、an algebraic closure of K よりむしろ the algebraic closure of K と呼ばれることが多い。 体 K の代数的閉包は K の最大の代数拡大と考えることができる。このことを見るためには、次のことに注意しよう。L を K の任意の代数拡大とすると、L の代数的閉包は K の代数的閉包でもあり、したがって L は K の代数的閉包に含まれる。K の代数的閉包はまた K を含む最小の代数的閉体でもある。なぜならば、M が K を含む任意の代数的閉体であれば、K 上代数的な M の元全体は K の代数的閉包をなすからだ。 体 K の代数的閉包の濃度は、K が無限体ならば K と同じで、K が有限体ならば可算無限である。 (ja)
  • 数学、特に抽象代数学において、体 K の代数的閉包(だいすうてきへいほう、英: algebraic closure)は、代数的に閉じている K の代数拡大である。数学においてたくさんある閉包のうちの1つである。 ツォルンの補題を使って、すべての体は代数的閉包をもつことと、体 K の代数的閉包は K のすべての元を固定するような同型の違いを除いてただ1つであることを証明できる。この本質的な一意性のため、an algebraic closure of K よりむしろ the algebraic closure of K と呼ばれることが多い。 体 K の代数的閉包は K の最大の代数拡大と考えることができる。このことを見るためには、次のことに注意しよう。L を K の任意の代数拡大とすると、L の代数的閉包は K の代数的閉包でもあり、したがって L は K の代数的閉包に含まれる。K の代数的閉包はまた K を含む最小の代数的閉体でもある。なぜならば、M が K を含む任意の代数的閉体であれば、K 上代数的な M の元全体は K の代数的閉包をなすからだ。 体 K の代数的閉包の濃度は、K が無限体ならば K と同じで、K が有限体ならば可算無限である。 (ja)
dbo:wikiPageID
  • 1441685 (xsd:integer)
dbo:wikiPageLength
  • 3690 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 89601004 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学、特に抽象代数学において、体 K の代数的閉包(だいすうてきへいほう、英: algebraic closure)は、代数的に閉じている K の代数拡大である。数学においてたくさんある閉包のうちの1つである。 ツォルンの補題を使って、すべての体は代数的閉包をもつことと、体 K の代数的閉包は K のすべての元を固定するような同型の違いを除いてただ1つであることを証明できる。この本質的な一意性のため、an algebraic closure of K よりむしろ the algebraic closure of K と呼ばれることが多い。 体 K の代数的閉包は K の最大の代数拡大と考えることができる。このことを見るためには、次のことに注意しよう。L を K の任意の代数拡大とすると、L の代数的閉包は K の代数的閉包でもあり、したがって L は K の代数的閉包に含まれる。K の代数的閉包はまた K を含む最小の代数的閉体でもある。なぜならば、M が K を含む任意の代数的閉体であれば、K 上代数的な M の元全体は K の代数的閉包をなすからだ。 体 K の代数的閉包の濃度は、K が無限体ならば K と同じで、K が有限体ならば可算無限である。 (ja)
  • 数学、特に抽象代数学において、体 K の代数的閉包(だいすうてきへいほう、英: algebraic closure)は、代数的に閉じている K の代数拡大である。数学においてたくさんある閉包のうちの1つである。 ツォルンの補題を使って、すべての体は代数的閉包をもつことと、体 K の代数的閉包は K のすべての元を固定するような同型の違いを除いてただ1つであることを証明できる。この本質的な一意性のため、an algebraic closure of K よりむしろ the algebraic closure of K と呼ばれることが多い。 体 K の代数的閉包は K の最大の代数拡大と考えることができる。このことを見るためには、次のことに注意しよう。L を K の任意の代数拡大とすると、L の代数的閉包は K の代数的閉包でもあり、したがって L は K の代数的閉包に含まれる。K の代数的閉包はまた K を含む最小の代数的閉体でもある。なぜならば、M が K を含む任意の代数的閉体であれば、K 上代数的な M の元全体は K の代数的閉包をなすからだ。 体 K の代数的閉包の濃度は、K が無限体ならば K と同じで、K が有限体ならば可算無限である。 (ja)
rdfs:label
  • 代数的閉包 (ja)
  • 代数的閉包 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of