数学の実解析の分野における単関数(たんかんすう、英: simple function)とは、実数直線の部分集合上の(十分に「良い」 - 正式な定義は下節を参照)実数値関数で、有限個の値しか取らないものをいう。しばしば加えて、単関数は可測であることが要求されることもある。 基本的な単関数の一例として、半開区間 [1,9) 上で定義された床関数が挙げられる(これは {1,2,3,4,5,6,7,8} のいずれかの値しか取らない)。より発展的な例として、実数直線上のディリクレ関数は、有理数に対しては 1 となり、その他の値に対しては 0 となる(すなわち「単関数」が「単純」であるというのは、技巧的な意味合いにおいてであって、一般的な話し言葉とは幾分食い違いがある)。また、すべての階段関数は単関数であることにも注意されたい(任意の単函数を階段函数と呼ぶ場合もある)。 単関数は、ルベーグ積分などの積分の理論の発展の第一段階において使用される。なぜならば、単関数に対して積分の定義を構築することは非常に容易なことであり、単関数の列を用いることで、より一般の関数を近似することが直ちに可能であるからである。

Property Value
dbo:abstract
  • 数学の実解析の分野における単関数(たんかんすう、英: simple function)とは、実数直線の部分集合上の(十分に「良い」 - 正式な定義は下節を参照)実数値関数で、有限個の値しか取らないものをいう。しばしば加えて、単関数は可測であることが要求されることもある。 基本的な単関数の一例として、半開区間 [1,9) 上で定義された床関数が挙げられる(これは {1,2,3,4,5,6,7,8} のいずれかの値しか取らない)。より発展的な例として、実数直線上のディリクレ関数は、有理数に対しては 1 となり、その他の値に対しては 0 となる(すなわち「単関数」が「単純」であるというのは、技巧的な意味合いにおいてであって、一般的な話し言葉とは幾分食い違いがある)。また、すべての階段関数は単関数であることにも注意されたい(任意の単函数を階段函数と呼ぶ場合もある)。 単関数は、ルベーグ積分などの積分の理論の発展の第一段階において使用される。なぜならば、単関数に対して積分の定義を構築することは非常に容易なことであり、単関数の列を用いることで、より一般の関数を近似することが直ちに可能であるからである。 (ja)
  • 数学の実解析の分野における単関数(たんかんすう、英: simple function)とは、実数直線の部分集合上の(十分に「良い」 - 正式な定義は下節を参照)実数値関数で、有限個の値しか取らないものをいう。しばしば加えて、単関数は可測であることが要求されることもある。 基本的な単関数の一例として、半開区間 [1,9) 上で定義された床関数が挙げられる(これは {1,2,3,4,5,6,7,8} のいずれかの値しか取らない)。より発展的な例として、実数直線上のディリクレ関数は、有理数に対しては 1 となり、その他の値に対しては 0 となる(すなわち「単関数」が「単純」であるというのは、技巧的な意味合いにおいてであって、一般的な話し言葉とは幾分食い違いがある)。また、すべての階段関数は単関数であることにも注意されたい(任意の単函数を階段函数と呼ぶ場合もある)。 単関数は、ルベーグ積分などの積分の理論の発展の第一段階において使用される。なぜならば、単関数に対して積分の定義を構築することは非常に容易なことであり、単関数の列を用いることで、より一般の関数を近似することが直ちに可能であるからである。 (ja)
dbo:wikiPageID
  • 2644942 (xsd:integer)
dbo:wikiPageLength
  • 3468 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 84086403 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の実解析の分野における単関数(たんかんすう、英: simple function)とは、実数直線の部分集合上の(十分に「良い」 - 正式な定義は下節を参照)実数値関数で、有限個の値しか取らないものをいう。しばしば加えて、単関数は可測であることが要求されることもある。 基本的な単関数の一例として、半開区間 [1,9) 上で定義された床関数が挙げられる(これは {1,2,3,4,5,6,7,8} のいずれかの値しか取らない)。より発展的な例として、実数直線上のディリクレ関数は、有理数に対しては 1 となり、その他の値に対しては 0 となる(すなわち「単関数」が「単純」であるというのは、技巧的な意味合いにおいてであって、一般的な話し言葉とは幾分食い違いがある)。また、すべての階段関数は単関数であることにも注意されたい(任意の単函数を階段函数と呼ぶ場合もある)。 単関数は、ルベーグ積分などの積分の理論の発展の第一段階において使用される。なぜならば、単関数に対して積分の定義を構築することは非常に容易なことであり、単関数の列を用いることで、より一般の関数を近似することが直ちに可能であるからである。 (ja)
  • 数学の実解析の分野における単関数(たんかんすう、英: simple function)とは、実数直線の部分集合上の(十分に「良い」 - 正式な定義は下節を参照)実数値関数で、有限個の値しか取らないものをいう。しばしば加えて、単関数は可測であることが要求されることもある。 基本的な単関数の一例として、半開区間 [1,9) 上で定義された床関数が挙げられる(これは {1,2,3,4,5,6,7,8} のいずれかの値しか取らない)。より発展的な例として、実数直線上のディリクレ関数は、有理数に対しては 1 となり、その他の値に対しては 0 となる(すなわち「単関数」が「単純」であるというのは、技巧的な意味合いにおいてであって、一般的な話し言葉とは幾分食い違いがある)。また、すべての階段関数は単関数であることにも注意されたい(任意の単函数を階段函数と呼ぶ場合もある)。 単関数は、ルベーグ積分などの積分の理論の発展の第一段階において使用される。なぜならば、単関数に対して積分の定義を構築することは非常に容易なことであり、単関数の列を用いることで、より一般の関数を近似することが直ちに可能であるからである。 (ja)
rdfs:label
  • 単関数 (ja)
  • 単関数 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of